IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v35y2019i1p420-428.html
   My bibliography  Save this article

When are prediction market prices most informative?

Author

Listed:
  • Brown, Alasdair
  • Reade, J. James
  • Vaughan Williams, Leighton

Abstract

Prediction markets are a popular platform for the elicitation of incentivised crowd predictions. This paper examines the variation in the information contained in prediction market prices by studying Intrade prices on U.S. elections around the release of opinion polls. We find that poll releases stimulate an immediate uptick in trading activity. However, much of this activity involves relatively inexperienced traders, meaning that the price efficiency declines in the immediate aftermath of a poll release, and does not recover until more experienced traders enter the market in the following hours. More generally, this suggests that information releases do not necessarily improve prediction market forecasts, but instead may attract noise traders who temporarily reduce the price efficiency.

Suggested Citation

  • Brown, Alasdair & Reade, J. James & Vaughan Williams, Leighton, 2019. "When are prediction market prices most informative?," International Journal of Forecasting, Elsevier, vol. 35(1), pages 420-428.
  • Handle: RePEc:eee:intfor:v:35:y:2019:i:1:p:420-428
    DOI: 10.1016/j.ijforecast.2018.05.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207018300852
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2018.05.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jacob A. Mincer & Victor Zarnowitz, 1969. "The Evaluation of Economic Forecasts," NBER Chapters, in: Economic Forecasts and Expectations: Analysis of Forecasting Behavior and Performance, pages 3-46, National Bureau of Economic Research, Inc.
    2. De Long, J Bradford, et al, 1990. "Positive Feedback Investment Strategies and Destabilizing Rational Speculation," Journal of Finance, American Finance Association, vol. 45(2), pages 379-395, June.
    3. Andrew Leigh & Justin Wolfers, 2006. "Competing Approaches to Forecasting Elections: Economic Models, Opinion Polling and Prediction Markets," The Economic Record, The Economic Society of Australia, vol. 82(258), pages 325-340, September.
    4. D’Amuri, Francesco & Marcucci, Juri, 2017. "The predictive power of Google searches in forecasting US unemployment," International Journal of Forecasting, Elsevier, vol. 33(4), pages 801-816.
    5. James Reade, 2014. "Information And Predictability: Bookmakers, Prediction Markets And Tipsters As Forecasters," Journal of Prediction Markets, University of Buckingham Press, vol. 8(1), pages 43-76.
    6. Leighton Vaughan Williams & J. James Reade, 2016. "Forecasting Elections," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(4), pages 308-328, July.
    7. David F. Hendry & Felix Pretis, 2013. "Anthropogenic influences on atmospheric CO2," Chapters, in: Roger Fouquet (ed.), Handbook on Energy and Climate Change, chapter 12, pages 287-326, Edward Elgar Publishing.
    8. Rothschild, David, 2015. "Combining forecasts for elections: Accurate, relevant, and timely," International Journal of Forecasting, Elsevier, vol. 31(3), pages 952-964.
    9. Karen Croxson & J. James Reade, 2014. "Information and Efficiency: Goal Arrival in Soccer Betting," Economic Journal, Royal Economic Society, vol. 124(575), pages 62-91, March.
    10. Alasdair Brown & Dooruj Rambaccussing & J. James Reade & Giambattista Rossi, 2018. "Forecasting With Social Media: Evidence From Tweets On Soccer Matches," Economic Inquiry, Western Economic Association International, vol. 56(3), pages 1748-1763, July.
    11. Jacob A. Mincer, 1969. "Economic Forecasts and Expectations: Analysis of Forecasting Behavior and Performance," NBER Books, National Bureau of Economic Research, Inc, number minc69-1.
    12. Leighton Vaughan Williams & J. James Reade, 2016. "Prediction Markets, Social Media and Information Efficiency," Kyklos, Wiley Blackwell, vol. 69(3), pages 518-556, August.
    13. Lionel Page, 2012. "‘It ain’t over till it's over.’ Yogi Berra bias on prediction markets," Applied Economics, Taylor & Francis Journals, vol. 44(1), pages 81-92, January.
    14. Peeters, Thomas, 2018. "Testing the Wisdom of Crowds in the field: Transfermarkt valuations and international soccer results," International Journal of Forecasting, Elsevier, vol. 34(1), pages 17-29.
    15. Michael A. Smith & David Paton & Leighton Vaughan Williams, 2006. "Market Efficiency in Person‐to‐Person Betting," Economica, London School of Economics and Political Science, vol. 73(292), pages 673-689, November.
    16. Robin Hanson & Ryan Oprea, 2009. "A Manipulator Can Aid Prediction Market Accuracy," Economica, London School of Economics and Political Science, vol. 76(302), pages 304-314, April.
    17. Carlos Santos & David Hendry & Soren Johansen, 2008. "Automatic selection of indicators in a fully saturated regression," Computational Statistics, Springer, vol. 23(2), pages 317-335, April.
    18. Huberty, Mark, 2015. "Can we vote with our tweet? On the perennial difficulty of election forecasting with social media," International Journal of Forecasting, Elsevier, vol. 31(3), pages 992-1007.
    19. Lennart Sjöberg, 2009. "Are all crowds equally wise? a comparison of political election forecasts by experts and the public," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(1), pages 1-18.
    20. Graefe, Andreas & Armstrong, J. Scott & Jones, Randall J. & Cuzán, Alfred G., 2014. "Combining forecasts: An application to elections," International Journal of Forecasting, Elsevier, vol. 30(1), pages 43-54.
    21. Wang, Wei & Rothschild, David & Goel, Sharad & Gelman, Andrew, 2015. "Forecasting elections with non-representative polls," International Journal of Forecasting, Elsevier, vol. 31(3), pages 980-991.
    22. Lionel Page & Robert T. Clemen, 2013. "Do Prediction Markets Produce Well‐Calibrated Probability Forecasts?-super-," Economic Journal, Royal Economic Society, vol. 123(568), pages 491-513, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oliver Merz & Raphael Flepp & Egon Franck, 2019. "Does sentiment harm market efficiency? An empirical analysis using a betting exchange setting," Working Papers 381, University of Zurich, Department of Business Administration (IBW).
    2. Raphael Flepp & Oliver Merz & Egon Franck, 2024. "When the league table lies: Does outcome bias lead to informationally inefficient markets?," Economic Inquiry, Western Economic Association International, vol. 62(1), pages 414-429, January.
    3. Romain Gauriot Author e-mail: romain.gauriot@nyu.edu & Lionel Page Author e-mail: lionel.page@uts.edu.au, 2021. "How Market Prices React to Information: Evidence from Binary Options Markets," Working Papers 20200058, New York University Abu Dhabi, Department of Social Science, revised Oct 2021.
    4. Luca De Angelis & J. James Reade, 2022. "Home advantage and mispricing in indoor sports’ ghost games: the case of European basketball," Economics Discussion Papers em-dp2022-01, Department of Economics, University of Reading.
    5. Oliver Merz & Raphael Flepp & Egon Franck, 2021. "Underestimating randomness: Outcome bias in betting exchange markets," Working Papers 390, University of Zurich, Department of Business Administration (IBW).
    6. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    7. Schadner, Wolfgang, 2022. "U.S. Politics from a multifractal perspective," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    8. Mark Richard & Jan Vecer, 2021. "Efficiency Testing of Prediction Markets: Martingale Approach, Likelihood Ratio and Bayes Factor Analysis," Risks, MDPI, vol. 9(2), pages 1-20, February.
    9. Merz, Oliver & Flepp, Raphael & Franck, Egon, 2021. "Sonic Thunder vs. Brian the Snail: Are people affected by uninformative racehorse names?," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 93(C).
    10. Bizzozero, Paolo & Flepp, Raphael & Franck, Egon, 2018. "The effect of fast trading on price discovery and efficiency: Evidence from a betting exchange," Journal of Economic Behavior & Organization, Elsevier, vol. 156(C), pages 126-143.
    11. Butler, David & Butler, Robert & Eakins, John, 2021. "Expert performance and crowd wisdom: Evidence from English Premier League predictions," European Journal of Operational Research, Elsevier, vol. 288(1), pages 170-182.
    12. Grainger, Daniel & Stoeckl, Natalie, 2019. "The importance of social learning for non-market valuation," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.
    13. Luca De Angelis & J. James Reade, 2023. "Home advantage and mispricing in indoor sports’ ghost games: the case of European basketball," Annals of Operations Research, Springer, vol. 325(1), pages 391-418, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    2. Mark Richard & Jan Vecer, 2021. "Efficiency Testing of Prediction Markets: Martingale Approach, Likelihood Ratio and Bayes Factor Analysis," Risks, MDPI, vol. 9(2), pages 1-20, February.
    3. Angelini, Giovanni & De Angelis, Luca & Singleton, Carl, 2022. "Informational efficiency and behaviour within in-play prediction markets," International Journal of Forecasting, Elsevier, vol. 38(1), pages 282-299.
    4. Butler, David & Butler, Robert & Eakins, John, 2021. "Expert performance and crowd wisdom: Evidence from English Premier League predictions," European Journal of Operational Research, Elsevier, vol. 288(1), pages 170-182.
    5. Tai, Chung-Ching & Lin, Hung-Wen & Chie, Bin-Tzong & Tung, Chen-Yuan, 2019. "Predicting the failures of prediction markets: A procedure of decision making using classification models," International Journal of Forecasting, Elsevier, vol. 35(1), pages 297-312.
    6. Fronzetti Colladon, Andrea, 2020. "Forecasting election results by studying brand importance in online news," International Journal of Forecasting, Elsevier, vol. 36(2), pages 414-427.
    7. Chih‐Yu Chin & Cheng‐Lung Wang, 2021. "A new insight into combining forecasts for elections: The role of social media," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(1), pages 132-143, January.
    8. Alasdair Brown & Dooruj Rambaccussing & J. James Reade & Giambattista Rossi, 2018. "Forecasting With Social Media: Evidence From Tweets On Soccer Matches," Economic Inquiry, Western Economic Association International, vol. 56(3), pages 1748-1763, July.
    9. Brown, Alasdair & Reade, J. James, 2019. "The wisdom of amateur crowds: Evidence from an online community of sports tipsters," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1073-1081.
    10. Ramirez, Philip & Reade, J. James & Singleton, Carl, 2023. "Betting on a buzz: Mispricing and inefficiency in online sportsbooks," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1413-1423.
    11. Ericsson, Neil R., 2016. "Eliciting GDP forecasts from the FOMC’s minutes around the financial crisis," International Journal of Forecasting, Elsevier, vol. 32(2), pages 571-583.
    12. Ericsson, Neil R., 2017. "How biased are U.S. government forecasts of the federal debt?," International Journal of Forecasting, Elsevier, vol. 33(2), pages 543-559.
    13. Reade, J. James & Vaughan Williams, Leighton, 2019. "Polls to probabilities: Comparing prediction markets and opinion polls," International Journal of Forecasting, Elsevier, vol. 35(1), pages 336-350.
    14. Merz, Oliver & Flepp, Raphael & Franck, Egon, 2021. "Sonic Thunder vs. Brian the Snail: Are people affected by uninformative racehorse names?," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 93(C).
    15. J. James Reade & Carl Singleton & Alasdair Brown, 2021. "Evaluating strange forecasts: The curious case of football match scorelines," Scottish Journal of Political Economy, Scottish Economic Society, vol. 68(2), pages 261-285, May.
    16. Ruud H. Koning & Renske Zijm, 2023. "Betting market efficiency and prediction in binary choice models," Annals of Operations Research, Springer, vol. 325(1), pages 135-148, June.
    17. He, Xue-Zhong & Treich, Nicolas, 2017. "Prediction market prices under risk aversion and heterogeneous beliefs," Journal of Mathematical Economics, Elsevier, vol. 70(C), pages 105-114.
    18. Angelini, Giovanni & De Angelis, Luca, 2019. "Efficiency of online football betting markets," International Journal of Forecasting, Elsevier, vol. 35(2), pages 712-721.
    19. Oliver Merz & Raphael Flepp & Egon Franck, 2021. "Underestimating randomness: Outcome bias in betting exchange markets," Working Papers 390, University of Zurich, Department of Business Administration (IBW).
    20. Bunker, Kenneth, 2020. "A two-stage model to forecast elections in new democracies," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1407-1419.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:35:y:2019:i:1:p:420-428. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.