IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v33y2017i2p560-562.html
   My bibliography  Save this article

Comment on “How Biased are US Government Forecasts of the Federal Debt?”

Author

Listed:
  • Gamber, Edward N.
  • Liebner, Jeffrey P.

Abstract

In this comment on “How Biased are US Government Forecasts of the Federal Debt?” by Neil R. Ericsson, we investigate the sensitivity of the “bare-bones” application of the impulse indicator saturation technique. We offer an alternative but complementary interpretation of Ericsson’s findings of bias in government debt forecasts. Our findings reinforce his interpretation of the role of the IIS technique as a general diagnostic tool for detecting model misspecification.

Suggested Citation

  • Gamber, Edward N. & Liebner, Jeffrey P., 2017. "Comment on “How Biased are US Government Forecasts of the Federal Debt?”," International Journal of Forecasting, Elsevier, vol. 33(2), pages 560-562.
  • Handle: RePEc:eee:intfor:v:33:y:2017:i:2:p:560-562
    DOI: 10.1016/j.ijforecast.2014.11.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207014001502
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2014.11.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrew B. Martinez, 2011. "Comparing Government Forecasts of the United States’ Gross Federal Debt," Working Papers 2011-002, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    2. Marcelle Chauvet & Jeremy M. Piger, 2003. "Identifying business cycle turning points in real time," Review, Federal Reserve Bank of St. Louis, vol. 85(Mar), pages 47-61.
    3. Carlos Santos & David Hendry & Soren Johansen, 2008. "Automatic selection of indicators in a fully saturated regression," Computational Statistics, Springer, vol. 23(2), pages 317-335, April.
    4. Robert H. Rasche, 1985. "Deficit projections vs. deficit forecasts," FRBSF Economic Letter, Federal Reserve Bank of San Francisco, issue jul5.
    5. David Hendry & Carlos Santos, 2010. "An Automatic Test of Super Exogeneity," Economics Series Working Papers 476, University of Oxford, Department of Economics.
    6. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ericsson, Neil R., 2017. "Interpreting estimates of forecast bias," International Journal of Forecasting, Elsevier, vol. 33(2), pages 563-568.
    2. Ericsson, Neil R., 2017. "How biased are U.S. government forecasts of the federal debt?," International Journal of Forecasting, Elsevier, vol. 33(2), pages 543-559.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ericsson, Neil R., 2017. "How biased are U.S. government forecasts of the federal debt?," International Journal of Forecasting, Elsevier, vol. 33(2), pages 543-559.
    2. Ericsson, Neil R., 2016. "Eliciting GDP forecasts from the FOMC’s minutes around the financial crisis," International Journal of Forecasting, Elsevier, vol. 32(2), pages 571-583.
    3. Owyang, Michael T. & Piger, Jeremy & Wall, Howard J., 2013. "Discordant city employment cycles," Regional Science and Urban Economics, Elsevier, vol. 43(2), pages 367-384.
    4. Marczak, Martyna & Proietti, Tommaso, 2016. "Outlier detection in structural time series models: The indicator saturation approach," International Journal of Forecasting, Elsevier, vol. 32(1), pages 180-202.
    5. Andrew B. Martinez, 2011. "Comparing Government Forecasts of the United States’ Gross Federal Debt," Working Papers 2011-002, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    6. David F. Hendry & Grayham E. Mizon, 2016. "Improving the teaching of econometrics," Cogent Economics & Finance, Taylor & Francis Journals, vol. 4(1), pages 1170096-117, December.
    7. Michael T. Owyang & Jeremy M. Piger & Howard J. Wall, 2005. "The 2001 recession and the states of the Eighth Federal Reserve District," Regional Economic Development, Federal Reserve Bank of St. Louis, issue Nov, pages 3-16.
    8. Marcelle Chauvet & Jeremy Piger, 2013. "Employment And The Business Cycle," Manchester School, University of Manchester, vol. 81, pages 16-42, October.
    9. Søren Johansen & Bent Nielsen, 2014. "Optimal hedging with the cointegrated vector autoregressive model," Discussion Papers 14-23, University of Copenhagen. Department of Economics.
    10. Olivier Darné & Laurent Ferrara, 2011. "Identification of Slowdowns and Accelerations for the Euro Area Economy," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 73(3), pages 335-364, June.
    11. Hendry, David F. & Pretis, Felix, 2023. "Analysing differences between scenarios," International Journal of Forecasting, Elsevier, vol. 39(2), pages 754-771.
    12. Vincent, BODART & Konstantin, KHOLODILIN & Fati, SHADMAN-MEHTA, 2005. "Identifying and Forecasting the Turning Points of the Belgian Business Cycle with Regime-Switching and Logit Models," Discussion Papers (ECON - Département des Sciences Economiques) 2005006, Université catholique de Louvain, Département des Sciences Economiques.
    13. Hendry, David F. & Mizon, Grayham E., 2014. "Unpredictability in economic analysis, econometric modeling and forecasting," Journal of Econometrics, Elsevier, vol. 182(1), pages 186-195.
    14. White, Halbert & Pettenuzzo, Davide, 2014. "Granger causality, exogeneity, cointegration, and economic policy analysis," Journal of Econometrics, Elsevier, vol. 178(P2), pages 316-330.
    15. Pretis, Felix, 2021. "Exogeneity in climate econometrics," Energy Economics, Elsevier, vol. 96(C).
    16. Charles, Amélie & Darné, Olivier & Diebolt, Claude & Ferrara, Laurent, 2015. "A new monthly chronology of the US industrial cycles in the prewar economy," Journal of Financial Stability, Elsevier, vol. 17(C), pages 3-9.
    17. Andrew B. Martinez, 2020. "Forecast Accuracy Matters for Hurricane Damage," Econometrics, MDPI, vol. 8(2), pages 1-24, May.
    18. Jeremy J. Nalewaik, 2006. "Estimating probabilities of recession in real time using GDP and GDI," Finance and Economics Discussion Series 2007-07, Board of Governors of the Federal Reserve System (U.S.).
    19. Huang, Yu-Lieh, 2012. "Measuring business cycles: A temporal disaggregation model with regime switching," Economic Modelling, Elsevier, vol. 29(2), pages 283-290.
    20. repec:hum:wpaper:sfb649dp2015-020 is not listed on IDEAS
    21. Vincent, BODART & Konstantin A., KHOLODILIN & Fati, SHADMAN-MEHTA, 2003. "Dating and Forecasting the Belgian Business Cycle," LIDAM Discussion Papers IRES 2003018, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:33:y:2017:i:2:p:560-562. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.