IDEAS home Printed from https://ideas.repec.org/p/gwc/wpaper/2012-006.html
   My bibliography  Save this paper

Evaluating a Global Vector Autoregression for Forecasting

Author

Listed:
  • Neil R. Ericsson

    (Board of Governors of the Federal Reserve System)

  • Erica L. Reisman

    (Board of Governors of the Federal Reserve System)

Abstract

Global vector autoregressions (GVARs) have several attractive features: multiple potential channels for the international transmission of macroeconomic and financial shocks, a standardized economically appealing choice of variables for each country or region examined, systematic treatment of long-run properties through cointegration analysis, and flexible dynamic specification through vector error correction modeling. Pesaran, Schuermann, and Smith (2009) generate and evaluate forecasts from a paradigm GVAR with 26 countries, based on Dées, di Mauro, Pesaran, and Smith (2007). The current paper empirically assesses the GVAR in Dées, di Mauro, Pesaran, and Smith (2007) with impulse indicator saturation (IIS)—a new generic procedure for evaluating parameter constancy, which is a central element in model-based forecasting. The empirical results indicate substantial room for an improved, more robust specification of that GVAR. Some tests are suggestive of how to achieve such improvements.

Suggested Citation

  • Neil R. Ericsson & Erica L. Reisman, 2012. "Evaluating a Global Vector Autoregression for Forecasting," Working Papers 2012-006, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
  • Handle: RePEc:gwc:wpaper:2012-006
    as

    Download full text from publisher

    File URL: https://www2.gwu.edu/~forcpgm/2012-006.pdf
    File Function: First version, 2012
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kevin D. Hoover & Stephen J. Perez, 1999. "Data mining reconsidered: encompassing and the general-to-specific approach to specification search," Econometrics Journal, Royal Economic Society, vol. 2(2), pages 167-191.
    2. Kevin D. Hoover & Stephen J. Perez, 2004. "Truth and Robustness in Cross‐country Growth Regressions," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 66(5), pages 765-798, December.
    3. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    4. MacKinnon, James G & Haug, Alfred A & Michelis, Leo, 1999. "Numerical Distribution Functions of Likelihood Ratio Tests for Cointegration," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(5), pages 563-577, Sept.-Oct.
    5. Filippo di Mauro & L. Vanessa Smith & Stephane Dees & M. Hashem Pesaran, 2007. "Exploring the international linkages of the euro area: a global VAR analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(1), pages 1-38.
    6. Pesaran, M. Hashem & Schuermann, Til & Smith, L. Vanessa, 2009. "Forecasting economic and financial variables with global VARs," International Journal of Forecasting, Elsevier, vol. 25(4), pages 642-675, October.
    7. Frank Smets & Rafael Wouters, 2007. "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach," American Economic Review, American Economic Association, vol. 97(3), pages 586-606, June.
    8. Krolzig, Hans-Martin & Hendry, David F., 2001. "Computer automation of general-to-specific model selection procedures," Journal of Economic Dynamics and Control, Elsevier, vol. 25(6-7), pages 831-866, June.
    9. Pesaran, M. Hashem & Schuermann, Til & Smith, L. Vanessa, 2009. "Rejoinder to comments on forecasting economic and financial variables with global VARs," International Journal of Forecasting, Elsevier, vol. 25(4), pages 703-715, October.
    10. Ericsson, Neil R & Hendry, David F & Mizon, Grayham E, 1998. "Exogeneity, Cointegration, and Economic Policy Analysis," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(4), pages 370-387, October.
    11. Pesaran, Mohammad Hashem & Holly, Sean & Dees, Stephane & Smith, L. Vanessa, 2007. "Long Run Macroeconomic Relations in the Global Economy," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 1, pages 1-20.
    12. Pesaran M.H. & Schuermann T. & Weiner S.M., 2004. "Modeling Regional Interdependencies Using a Global Error-Correcting Macroeconometric Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 129-162, April.
    13. Christopher J. Erceg & Luca Guerrieri & Christopher Gust, 2006. "SIGMA: A New Open Economy Model for Policy Analysis," International Journal of Central Banking, International Journal of Central Banking, vol. 2(1), March.
    14. David F. Hendry & Hans-Martin Krolzig, 2005. "The Properties of Automatic "GETS" Modelling," Economic Journal, Royal Economic Society, vol. 115(502), pages 32-61, March.
    15. M. Hashem Pesaran & Ron Smith, 2006. "Macroeconometric Modelling With A Global Perspective," Manchester School, University of Manchester, vol. 74(s1), pages 24-49, September.
    16. Castle, Jennifer L. & Fawcett, Nicholas W.P. & Hendry, David F., 2009. "Nowcasting is not Just Contemporaneous Forecasting," National Institute Economic Review, National Institute of Economic and Social Research, vol. 210, pages 71-89, October.
    17. Chudik, Alexander & Pesaran, M. Hashem, 2011. "Infinite-dimensional VARs and factor models," Journal of Econometrics, Elsevier, vol. 163(1), pages 4-22, July.
    18. Garratt, Anthony & Lee, Kevin & Pesaran, M. Hashem & Shin, Yongcheol, 2012. "Global and National Macroeconometric Modelling: A Long-Run Structural Approach," OUP Catalogue, Oxford University Press, number 9780199650460.
    19. Carlos Santos & David Hendry & Soren Johansen, 2008. "Automatic selection of indicators in a fully saturated regression," Computational Statistics, Springer, vol. 23(2), pages 317-335, April.
    20. Johansen, Soren, 1992. "Cointegration in partial systems and the efficiency of single-equation analysis," Journal of Econometrics, Elsevier, vol. 52(3), pages 389-402, June.
    21. Castrén, Olli & Dées, Stéphane & Zaher, Fadi, 2010. "Stress-testing euro area corporate default probabilities using a global macroeconomic model," Journal of Financial Stability, Elsevier, vol. 6(2), pages 64-78, June.
    22. Hendry, David F., 2006. "Robustifying forecasts from equilibrium-correction systems," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 399-426.
    23. M. Hashem Pesaran & L. Vanessa Smith & Ron P. Smith, 2007. "What if the UK or Sweden had joined the euro in 1999? An empirical evaluation using a Global VAR," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 12(1), pages 55-87.
    24. Clements,Michael & Hendry,David, 1998. "Forecasting Economic Time Series," Cambridge Books, Cambridge University Press, number 9780521634809, September.
    25. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
    26. P. Hiebert & I. Vansteenkiste, 2010. "International trade, technological shocks and spillovers in the labour market: a GVAR analysis of the US manufacturing sector," Applied Economics, Taylor & Francis Journals, vol. 42(24), pages 3045-3066.
    27. Harbo, Ingrid, et al, 1998. "Asymptotic Inference on Cointegrating Rank in Partial Systems," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(4), pages 388-399, October.
    28. Rochelle M. Edge & Refet S. Gurkaynak, 2010. "How Useful Are Estimated DSGE Model Forecasts for Central Bankers?," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 41(2 (Fall)), pages 209-259.
    29. David Hendry & Carlos Santos, 2010. "An Automatic Test of Super Exogeneity," Economics Series Working Papers 476, University of Oxford, Department of Economics.
    30. Juselius, Katarina, 2006. "The Cointegrated VAR Model: Methodology and Applications," OUP Catalogue, Oxford University Press, number 9780199285679.
    31. Johansen, Soren, 1995. "Likelihood-Based Inference in Cointegrated Vector Autoregressive Models," OUP Catalogue, Oxford University Press, number 9780198774501.
    32. Jennifer L. Castle & David F. Hendry, 2010. "Nowcasting from disaggregates in the face of location shifts," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 200-214.
    33. Jurgen A. Doornik, 2008. "Encompassing and Automatic Model Selection," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 70(s1), pages 915-925, December.
    34. Juselius, Katarina, 1992. "Domestic and foreign effects on prices in an open economy: The case of Denmark," Journal of Policy Modeling, Elsevier, vol. 14(4), pages 401-428, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hecq, Alain & Jacobs, Jan P.A.M. & Stamatogiannis, Michalis P., 2019. "Testing for news and noise in non-stationary time series subject to multiple historical revisions," Journal of Macroeconomics, Elsevier, vol. 60(C), pages 396-407.
    2. Ericsson, Neil R., 2017. "How biased are U.S. government forecasts of the federal debt?," International Journal of Forecasting, Elsevier, vol. 33(2), pages 543-559.
    3. Marçal, Emerson Fernandes & Zimmermann, Beatrice & de Prince, Diogo & Merlin, Giovanni, 2018. "Assessing interdependence among countries' fundamentals and its implications for exchange rate misalignment estimates: An empirical exercise based on GVAR," Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 72(4), December.
    4. Ericsson, Neil R., 2016. "Eliciting GDP forecasts from the FOMC’s minutes around the financial crisis," International Journal of Forecasting, Elsevier, vol. 32(2), pages 571-583.
    5. Hendry, David F., 2018. "Deciding between alternative approaches in macroeconomics," International Journal of Forecasting, Elsevier, vol. 34(1), pages 119-135.
    6. Marczak, Martyna & Proietti, Tommaso, 2016. "Outlier detection in structural time series models: The indicator saturation approach," International Journal of Forecasting, Elsevier, vol. 32(1), pages 180-202.
    7. Constantin Burgi, 2015. "Can A Subset Of Forecasters Beat The Simple Average In The Spf?," Working Papers 2015-001, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    8. Neil R. Ericsson & Mohammed H. I. Dore & Hassan Butt, 2022. "Detecting and Quantifying Structural Breaks in Climate," Econometrics, MDPI, vol. 10(4), pages 1-27, November.
    9. Constantin Bürgi & Tara M. Sinclair, 2017. "A nonparametric approach to identifying a subset of forecasters that outperforms the simple average," Empirical Economics, Springer, vol. 53(1), pages 101-115, August.
    10. Konstantinos N. Konstantakis & Panayotis G. Michaelides & Livia Chatzieleftheriou & Arsenios‐Georgios N. Prelorentzos, 2022. "Crisis and the Chinese miracle: A network—GVAR model," Bulletin of Economic Research, Wiley Blackwell, vol. 74(3), pages 900-921, July.
    11. Castle, Jennifer L. & Hendry, David F. & Martinez, Andrew B., 2023. "The historical role of energy in UK inflation and productivity with implications for price inflation," Energy Economics, Elsevier, vol. 126(C).
    12. Carlos A. Medel, 2018. "Forecasting Inflation with the Hybrid New Keynesian Phillips Curve: A Compact-Scale Global VAR Approach," International Economic Journal, Taylor & Francis Journals, vol. 32(3), pages 331-371, July.
    13. David Hendry & Jurgen A. Doornik & Felix Pretis, 2013. "Step-indicator Saturation," Economics Series Working Papers 658, University of Oxford, Department of Economics.
    14. Deniz Sevinc & Edgar Mata Flores, 2021. "Macroeconomic and financial implications of multi‐dimensional interdependencies between OECD countries," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 741-776, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander Chudik & Vanessa Smith, 2013. "The GVAR approach and the dominance of the U.S. economy," Globalization Institute Working Papers 136, Federal Reserve Bank of Dallas.
    2. Alexander Chudik & M. Hashem Pesaran, 2016. "Theory And Practice Of Gvar Modelling," Journal of Economic Surveys, Wiley Blackwell, vol. 30(1), pages 165-197, February.
    3. Chisiridis, Konstantinos & Mouratidis, Kostas & Panagiotidis, Theodore, 2022. "The north-south divide, the euro and the world," Journal of International Money and Finance, Elsevier, vol. 121(C).
    4. Neil R. Ericsson, 2021. "Dynamic Econometrics in Action: A Biography of David F. Hendry," International Finance Discussion Papers 1311, Board of Governors of the Federal Reserve System (U.S.).
    5. Konstantinos N. Konstantakis & Panayotis G. Michaelides & Livia Chatzieleftheriou & Arsenios‐Georgios N. Prelorentzos, 2022. "Crisis and the Chinese miracle: A network—GVAR model," Bulletin of Economic Research, Wiley Blackwell, vol. 74(3), pages 900-921, July.
    6. David F. Hendry & Grayham E. Mizon, 2016. "Improving the teaching of econometrics," Cogent Economics & Finance, Taylor & Francis Journals, vol. 4(1), pages 1170096-117, December.
    7. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    8. Carlos A. Medel, 2018. "Forecasting Inflation with the Hybrid New Keynesian Phillips Curve: A Compact-Scale Global VAR Approach," International Economic Journal, Taylor & Francis Journals, vol. 32(3), pages 331-371, July.
    9. Sona Benecka & Ludmila Fadejeva & Martin Feldkircher, 2018. "Spillovers from Euro Area Monetary Policy: A Focus on Emerging Europe," Working Papers 2018/04, Latvijas Banka.
    10. Jennifer Castle & David Hendry, 2007. "Forecasting UK Inflation: the Roles of Structural Breaks and Time Disaggregation," Economics Series Working Papers 309, University of Oxford, Department of Economics.
    11. Julia Campos & Neil R. Ericsson & David F. Hendry, 2005. "General-to-specific modeling: an overview and selected bibliography," International Finance Discussion Papers 838, Board of Governors of the Federal Reserve System (U.S.).
    12. Artha Hoxha, 2018. "Explaining the impact of the global financial crisis on European transition countries: a GVAR approach," Focus on European Economic Integration, Oesterreichische Nationalbank (Austrian Central Bank), issue Q2-18, pages 81-97.
    13. Konstantakis, Konstantinos N. & Michaelides, Panayotis G. & Tsionas, Efthymios G. & Minou, Chrysanthi, 2015. "System estimation of GVAR with two dominants and network theory: Evidence for BRICs," Economic Modelling, Elsevier, vol. 51(C), pages 604-616.
    14. Fadejeva, Ludmila & Feldkircher, Martin & Reininger, Thomas, 2017. "International spillovers from Euro area and US credit and demand shocks: A focus on emerging Europe," Journal of International Money and Finance, Elsevier, vol. 70(C), pages 1-25.
    15. David Hendry & Michael P. Clements, 2010. "Forecasting from Mis-specified Models in the Presence of Unanticipated Location Shifts," Economics Series Working Papers 484, University of Oxford, Department of Economics.
    16. Carlos Medel, 2017. "Forecasting Chilean inflation with the hybrid new keynesian Phillips curve: globalisation, combination, and accuracy," Journal Economía Chilena (The Chilean Economy), Central Bank of Chile, vol. 20(3), pages 004-050, December.
    17. Adam Traczyk, 2013. "Financial integration and the term structure of interest rates," Empirical Economics, Springer, vol. 45(3), pages 1267-1305, December.
    18. Xu, T.T., 2012. "The role of credit in international business cycles," Cambridge Working Papers in Economics 1202, Faculty of Economics, University of Cambridge.
    19. Mahdi Barakchian, S., 2015. "Transmission of US monetary policy into the Canadian economy: A structural cointegration analysis," Economic Modelling, Elsevier, vol. 46(C), pages 11-26.
    20. Konstantakis, Konstantinos N. & Michaelides, Panayotis G., 2014. "Transmission of the debt crisis: From EU15 to USA or vice versa? A GVAR approach," Journal of Economics and Business, Elsevier, vol. 76(C), pages 115-132.

    More about this item

    Keywords

    cointegration; error correction; forecasting; GVAR; impulse indicator saturation; model design; model evaluation; model selection; parameter constancy; VAR;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • F41 - International Economics - - Macroeconomic Aspects of International Trade and Finance - - - Open Economy Macroeconomics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gwc:wpaper:2012-006. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: GW Economics Department (email available below). General contact details of provider: https://edirc.repec.org/data/pfgwuus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.