IDEAS home Printed from https://ideas.repec.org/a/bla/obuest/v86y2024i1p1-20.html
   My bibliography  Save this article

A Brief History of General‐to‐specific Modelling

Author

Listed:
  • David F. Hendry

Abstract

We review key stages in the development of general‐to‐specific modelling (Gets). Selecting a simplified model from a more general specification was initially implemented manually, then through computer programs to its present automated machine learning role to discover a viable empirical model. Throughout, Gets applications faced many criticisms, especially from accusations of ‘data mining’—no longer pejorative—with other criticisms based on misunderstandings of the methodology, all now rebutted. A prior theoretical formulation can be retained unaltered while searching over more variables than the available sample size from non‐stationary data to select congruent, encompassing relations with invariant parameters on valid conditioning variables.

Suggested Citation

  • David F. Hendry, 2024. "A Brief History of General‐to‐specific Modelling," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 86(1), pages 1-20, February.
  • Handle: RePEc:bla:obuest:v:86:y:2024:i:1:p:1-20
    DOI: 10.1111/obes.12578
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/obes.12578
    Download Restriction: no

    File URL: https://libkey.io/10.1111/obes.12578?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kevin D. Hoover & Stephen J. Perez, 1999. "Data mining reconsidered: encompassing and the general-to-specific approach to specification search," Econometrics Journal, Royal Economic Society, vol. 2(2), pages 167-191.
    2. Brian Chi-ang Lin & Siqi Zheng & Felix Pretis & Lea Schneider & Jason E. Smerdon & David F. Hendry, 2016. "Detecting Volcanic Eruptions In Temperature Reconstructions By Designed Break-Indicator Saturation," Journal of Economic Surveys, Wiley Blackwell, vol. 30(3), pages 403-429, July.
    3. Hendry, David F. & Mizon, Grayham E., 2014. "Unpredictability in economic analysis, econometric modeling and forecasting," Journal of Econometrics, Elsevier, vol. 182(1), pages 186-195.
    4. Juselius, Katarina, 1993. "VAR Modelling and Haavelmo's Probability Approach to Macroeconomic Modelling," Empirical Economics, Springer, vol. 18(4), pages 595-622.
    5. Hendry, David F, 1985. "Monetary Economic Myth and Econometric Reality," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 1(1), pages 72-84, Spring.
    6. Ericsson, Neil R., 2017. "Economic forecasting in theory and practice: An interview with David F. Hendry," International Journal of Forecasting, Elsevier, vol. 33(2), pages 523-542.
    7. Søren Johansen & Bent Nielsen, 2016. "Asymptotic Theory of Outlier Detection Algorithms for Linear Time Series Regression Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 321-348, June.
    8. Denton, Frank T, 1985. "Data Mining as an Industry," The Review of Economics and Statistics, MIT Press, vol. 67(1), pages 124-127, February.
    9. Pagan, Adrian, 1987. "Three Econometric Methodologies: A Critical Appraisal," Journal of Economic Surveys, Wiley Blackwell, vol. 1(1), pages 3-24.
    10. Teodosio Perez‐Amaral & Giampiero M. Gallo & Halbert White, 2003. "A Flexible Tool for Model Building: the Relevant Transformation of the Inputs Network Approach (RETINA)," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 65(s1), pages 821-838, December.
    11. Castle, Jennifer L. & Doornik, Jurgen A. & Hendry, David F., 2012. "Model selection when there are multiple breaks," Journal of Econometrics, Elsevier, vol. 169(2), pages 239-246.
    12. HENDRY, David F. & RICHARD, Jean-François, 1983. "The econometric analysis of economic time series," LIDAM Reprints CORE 531, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    13. Neil R. Ericsson & James G. MacKinnon, 2002. "Distributions of error correction tests for cointegration," Econometrics Journal, Royal Economic Society, vol. 5(2), pages 285-318, June.
    14. David F. Hendry & Hans-Martin Krolzig, 2004. "We Ran One Regression," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 66(5), pages 799-810, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Neil R. Ericsson, 2021. "Dynamic Econometrics in Action: A Biography of David F. Hendry," International Finance Discussion Papers 1311, Board of Governors of the Federal Reserve System (U.S.).
    2. Julia Campos & Neil R. Ericsson & David F. Hendry, 2005. "General-to-specific modeling: an overview and selected bibliography," International Finance Discussion Papers 838, Board of Governors of the Federal Reserve System (U.S.).
    3. David F. Hendry & Grayham E. Mizon, 2016. "Improving the teaching of econometrics," Cogent Economics & Finance, Taylor & Francis Journals, vol. 4(1), pages 1170096-117, December.
    4. Ericsson, Neil R., 2017. "Economic forecasting in theory and practice: An interview with David F. Hendry," International Journal of Forecasting, Elsevier, vol. 33(2), pages 523-542.
    5. David F. Hendry, 2020. "A Short History of Macro-econometric Modelling," Economics Papers 2020-W01, Economics Group, Nuffield College, University of Oxford.
    6. Hendry, David F., 2018. "Deciding between alternative approaches in macroeconomics," International Journal of Forecasting, Elsevier, vol. 34(1), pages 119-135.
    7. Andrew B. Martinez, 2020. "Forecast Accuracy Matters for Hurricane Damage," Econometrics, MDPI, vol. 8(2), pages 1-24, May.
    8. Castle, Jennifer L. & Doornik, Jurgen A. & Hendry, David F., 2023. "Robust Discovery of Regression Models," Econometrics and Statistics, Elsevier, vol. 26(C), pages 31-51.
    9. Ericsson, Neil R., 2017. "How biased are U.S. government forecasts of the federal debt?," International Journal of Forecasting, Elsevier, vol. 33(2), pages 543-559.
    10. Jennifer L. Castle & David F. Hendry & Andrew B. Martinez, 2017. "Evaluating Forecasts, Narratives and Policy Using a Test of Invariance," Econometrics, MDPI, vol. 5(3), pages 1-27, September.
    11. Hendry, David F. & Johansen, Søren, 2015. "Model Discovery And Trygve Haavelmo’S Legacy," Econometric Theory, Cambridge University Press, vol. 31(1), pages 93-114, February.
    12. Castle Jennifer L. & Doornik Jurgen A & Hendry David F., 2011. "Evaluating Automatic Model Selection," Journal of Time Series Econometrics, De Gruyter, vol. 3(1), pages 1-33, February.
    13. Jennifer Castle & David Hendry, 2016. "Policy Analysis, Forediction, and Forecast Failure," Economics Series Working Papers 809, University of Oxford, Department of Economics.
    14. Adrian C. Darnell, 1994. "A Dictionary Of Econometrics," Books, Edward Elgar Publishing, number 118, March.
    15. Castle, Jennifer L. & Doornik, Jurgen A. & Hendry, David F., 2012. "Model selection when there are multiple breaks," Journal of Econometrics, Elsevier, vol. 169(2), pages 239-246.
    16. Ericsson, Neil R., 2017. "Interpreting estimates of forecast bias," International Journal of Forecasting, Elsevier, vol. 33(2), pages 563-568.
    17. Brian Chi-ang Lin & Siqi Zheng & Felix Pretis & Lea Schneider & Jason E. Smerdon & David F. Hendry, 2016. "Detecting Volcanic Eruptions In Temperature Reconstructions By Designed Break-Indicator Saturation," Journal of Economic Surveys, Wiley Blackwell, vol. 30(3), pages 403-429, July.
    18. Jennifer L. Castle & David F. Hendry & Andrew B. Martinez, 2022. "The Historical Role of Energy in UK Inflation and Productivity and Implications for Price Inflation in 2022," Working Papers 2022-001, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    19. Jurgen A. Doornik & David F. Hendry & Steve Cook, 2015. "Statistical model selection with “Big Data”," Cogent Economics & Finance, Taylor & Francis Journals, vol. 3(1), pages 1045216-104, December.
    20. Ericsson Neil R., 2016. "Testing for and estimating structural breaks and other nonlinearities in a dynamic monetary sector," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(4), pages 377-398, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:obuest:v:86:y:2024:i:1:p:1-20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/sfeixuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.