IDEAS home Printed from https://ideas.repec.org/p/nuf/econwp/1608.html
   My bibliography  Save this paper

Asymptotic Analysis of Iterated 1-step Huber-skip M-estimators with Varying Cut-offs

Author

Listed:
  • Bent Nielsen

    (Nuffield College, Oxford)

  • Xiyu Jiao

    (Department of Economics, University of Oxford and Mansfield College)

Abstract

We consider outlier detection algorithms for time series regression based on iterated 1-step Huber-skip M-estimators. This paper analyses the role of varying cut-offs in such algorithms. The argument involves an asymptotic theory for a new class of weighted and marked empirical processes allowing for estimation errors of the scale and the regression coefficient.

Suggested Citation

  • Bent Nielsen & Xiyu Jiao, 2016. "Asymptotic Analysis of Iterated 1-step Huber-skip M-estimators with Varying Cut-offs," Economics Papers 2016-W08, Economics Group, Nuffield College, University of Oxford.
  • Handle: RePEc:nuf:econwp:1608
    as

    Download full text from publisher

    File URL: https://www.nuffield.ox.ac.uk/economics/papers/2016/AMISTAT2016Aug24DP.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kevin D. Hoover & Stephen J. Perez, 1999. "Data mining reconsidered: encompassing and the general-to-specific approach to specification search," Econometrics Journal, Royal Economic Society, vol. 2(2), pages 167-191.
    2. Cavaliere, Giuseppe & Georgiev, Iliyan, 2013. "Exploiting Infinite Variance Through Dummy Variables In Nonstationary Autoregressions," Econometric Theory, Cambridge University Press, vol. 29(6), pages 1162-1195, December.
    3. repec:bot:quadip:118 is not listed on IDEAS
    4. Bollerslev, Tim & Russell, Jeffrey & Watson, Mark (ed.), 2010. "Volatility and Time Series Econometrics: Essays in Honor of Robert Engle," OUP Catalogue, Oxford University Press, number 9780199549498.
    5. David Hendry & Carlos Santos, 2010. "An Automatic Test of Super Exogeneity," Economics Series Working Papers 476, University of Oxford, Department of Economics.
    6. Carlos Santos & David Hendry & Soren Johansen, 2008. "Automatic selection of indicators in a fully saturated regression," Computational Statistics, Springer, vol. 23(2), pages 317-335, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Søren Johansen & Bent Nielsen, 2014. "Optimal hedging with the cointegrated vector autoregressive model," Discussion Papers 14-23, University of Copenhagen. Department of Economics.
    2. Søren Johansen & Bent Nielsen, 2014. "Outlier detection algorithms for least squares time series regression," Economics Papers 2014-W04, Economics Group, Nuffield College, University of Oxford.
    3. Ericsson, Neil R., 2016. "Eliciting GDP forecasts from the FOMC’s minutes around the financial crisis," International Journal of Forecasting, Elsevier, vol. 32(2), pages 571-583.
    4. Andrew B. Martinez, 2011. "Comparing Government Forecasts of the United States’ Gross Federal Debt," Working Papers 2011-002, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    5. David F. Hendry & Grayham E. Mizon, 2016. "Improving the teaching of econometrics," Cogent Economics & Finance, Taylor & Francis Journals, vol. 4(1), pages 1170096-117, December.
    6. Castle, Jennifer L. & Doornik, Jurgen A. & Hendry, David F., 2023. "Robust Discovery of Regression Models," Econometrics and Statistics, Elsevier, vol. 26(C), pages 31-51.
    7. Nicholas Apergis & Arusha Cooray, 2013. "Forecasting fiscal variables: Only a strong growth plan can sustain the Greek austerity programs - Evidence from simultaneous and structural models," CAMA Working Papers 2013-25, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    8. Castle, Jennifer L. & Doornik, Jurgen A. & Hendry, David F., 2012. "Model selection when there are multiple breaks," Journal of Econometrics, Elsevier, vol. 169(2), pages 239-246.
    9. Ericsson, Neil R., 2017. "Economic forecasting in theory and practice: An interview with David F. Hendry," International Journal of Forecasting, Elsevier, vol. 33(2), pages 523-542.
    10. Neil Ericsson & Erica Reisman, 2012. "Evaluating a Global Vector Autoregression for Forecasting," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 18(3), pages 247-258, August.
    11. Ericsson Neil R., 2016. "Testing for and estimating structural breaks and other nonlinearities in a dynamic monetary sector," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(4), pages 377-398, September.
    12. Igor Pelipas, 2012. "Multiple Structural Breaks and Inflation Persistance in Belarus," BEROC Working Paper Series 21, Belarusian Economic Research and Outreach Center (BEROC).
    13. Igor Pelipas, 2011. "Structural Breaks and Dynamic Characteristics of Inflation and Growth Rates of Monetary Aggregates," BEROC Working Paper Series 15, Belarusian Economic Research and Outreach Center (BEROC).
    14. Neil R. Ericsson, 2021. "Dynamic Econometrics in Action: A Biography of David F. Hendry," International Finance Discussion Papers 1311, Board of Governors of the Federal Reserve System (U.S.).
    15. Castle Jennifer L. & Doornik Jurgen A & Hendry David F., 2011. "Evaluating Automatic Model Selection," Journal of Time Series Econometrics, De Gruyter, vol. 3(1), pages 1-33, February.
    16. Marczak, Martyna & Proietti, Tommaso, 2016. "Outlier detection in structural time series models: The indicator saturation approach," International Journal of Forecasting, Elsevier, vol. 32(1), pages 180-202.
    17. Søren Johansen & Bent Nielsen, 2013. "Outlier Detection in Regression Using an Iterated One-Step Approximation to the Huber-Skip Estimator," Econometrics, MDPI, vol. 1(1), pages 1-18, May.
    18. Hendry, David F. & Pretis, Felix, 2023. "Analysing differences between scenarios," International Journal of Forecasting, Elsevier, vol. 39(2), pages 754-771.
    19. Gamber, Edward N. & Liebner, Jeffrey P., 2017. "Comment on “How Biased are US Government Forecasts of the Federal Debt?”," International Journal of Forecasting, Elsevier, vol. 33(2), pages 560-562.
    20. Hendry, David F. & Mizon, Grayham E., 2014. "Unpredictability in economic analysis, econometric modeling and forecasting," Journal of Econometrics, Elsevier, vol. 182(1), pages 186-195.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nuf:econwp:1608. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Maxine Collett (email available below). General contact details of provider: https://www.nuffield.ox.ac.uk/economics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.