IDEAS home Printed from https://ideas.repec.org/r/nbr/nberwo/24070.html
   My bibliography  Save this item

Shrinking the Cross Section

Citations

RePEc Biblio mentions

As found on the RePEc Biblio, the curated bibliography for Economics:
  1. > Econometrics > Big Data

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Freire, Gustavo, 2021. "Tail risk and investors’ concerns: Evidence from Brazil," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
  2. Guanhao Feng & Stefano Giglio & Dacheng Xiu, 2020. "Taming the Factor Zoo: A Test of New Factors," Journal of Finance, American Finance Association, vol. 75(3), pages 1327-1370, June.
  3. Bandi, Federico M. & Chaudhuri, Shomesh E. & Lo, Andrew W. & Tamoni, Andrea, 2021. "Spectral factor models," Journal of Financial Economics, Elsevier, vol. 142(1), pages 214-238.
  4. Pan, Zhiyuan & Zhong, Hao & Wang, Yudong & Huang, Juan, 2024. "Forecasting oil futures returns with news," Energy Economics, Elsevier, vol. 134(C).
  5. Carl Remlinger & Bri`ere Marie & Alasseur Cl'emence & Joseph Mikael, 2021. "Expert Aggregation for Financial Forecasting," Papers 2111.15365, arXiv.org, revised Jul 2023.
  6. Cheng, Mingmian & Liao, Yuan & Yang, Xiye, 2023. "Uniform predictive inference for factor models with instrumental and idiosyncratic betas," Journal of Econometrics, Elsevier, vol. 237(2).
  7. Alexander Arimond & Damian Borth & Andreas Hoepner & Michael Klawunn & Stefan Weisheit, 2020. "Neural Networks and Value at Risk," Papers 2005.01686, arXiv.org, revised May 2020.
  8. Cakici, Nusret & Fieberg, Christian & Metko, Daniel & Zaremba, Adam, 2023. "Machine learning goes global: Cross-sectional return predictability in international stock markets," Journal of Economic Dynamics and Control, Elsevier, vol. 155(C).
  9. Molero-González, L. & Trinidad-Segovia, J.E. & Sánchez-Granero, M.A. & García-Medina, A., 2023. "Market Beta is not dead: An approach from Random Matrix Theory," Finance Research Letters, Elsevier, vol. 55(PA).
  10. Kozak, Serhiy & Santosh, Shrihari, 2020. "Why do discount rates vary?," Journal of Financial Economics, Elsevier, vol. 137(3), pages 740-751.
  11. Jorge Guijarro-Ordonez & Markus Pelger & Greg Zanotti, 2021. "Deep Learning Statistical Arbitrage," Papers 2106.04028, arXiv.org, revised Oct 2022.
  12. Andrew Y Chen & Tom Zimmermann & Jeffrey Pontiff, 2020. "Publication Bias and the Cross-Section of Stock Returns," The Review of Asset Pricing Studies, Society for Financial Studies, vol. 10(2), pages 249-289.
  13. Maysam Khodayari Gharanchaei & Prabhu Prasad Panda & Xilin Chen, 2024. "Quantitative Investment Diversification Strategies via Various Risk Models," Papers 2407.01550, arXiv.org.
  14. Victor DeMiguel & Javier Gil-Bazo & Francisco J. Nogales & André A. P. Santos, 2021. "Can Machine Learning Help to Select Portfolios of Mutual Funds?," Working Papers 1245, Barcelona School of Economics.
  15. Christian Schlag & Michael Semenischev & Julian Thimme, 2021. "Predictability and the Cross-Section of Expected Returns: A Challenge for Asset Pricing Models," Management Science, INFORMS, vol. 67(12), pages 7932-7950, December.
  16. Martin Lettau & Markus Pelger & Stijn Van Nieuwerburgh, 2020. "Factors That Fit the Time Series and Cross-Section of Stock Returns," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2274-2325.
  17. Helena Chuliá & Sabuhi Khalili & Jorge M. Uribe, 2024. "Monitoring time-varying systemic risk in sovereign debt and currency markets with generative AI," IREA Working Papers 202402, University of Barcelona, Research Institute of Applied Economics, revised Feb 2024.
  18. Doron Avramov & Guy Kaplanski & Avanidhar Subrahmanyam, 2022. "Postfundamentals Price Drift in Capital Markets: A Regression Regularization Perspective," Management Science, INFORMS, vol. 68(10), pages 7658-7681, October.
  19. Chinco, Alex & Neuhierl, Andreas & Weber, Michael, 2021. "Estimating the anomaly base rate," Journal of Financial Economics, Elsevier, vol. 140(1), pages 101-126.
  20. Thomas Conlon & John Cotter & Iason Kynigakis, 2021. "Machine Learning and Factor-Based Portfolio Optimization," Working Papers 202111, Geary Institute, University College Dublin.
  21. Anatolyev, Stanislav & Mikusheva, Anna, 2022. "Factor models with many assets: Strong factors, weak factors, and the two-pass procedure," Journal of Econometrics, Elsevier, vol. 229(1), pages 103-126.
  22. Martin, Ian W.R. & Nagel, Stefan, 2022. "Market efficiency in the age of big data," Journal of Financial Economics, Elsevier, vol. 145(1), pages 154-177.
  23. Anna Brzozowska & Dagmara Bubel, 2020. "Estimation of the Imperative of Rural Area Development on Panel Data in the Process of Managing Agricultural Holdings in Poland," Agriculture, MDPI, vol. 10(7), pages 1-20, July.
  24. Son, Bumho & Lee, Jaewook, 2022. "Graph-based multi-factor asset pricing model," Finance Research Letters, Elsevier, vol. 44(C).
  25. Neely, Christopher J., 2022. "How persistent are unconventional monetary policy effects?," Journal of International Money and Finance, Elsevier, vol. 126(C).
  26. Constantinos Kardaras & Hyeng Keun Koo & Johannes Ruf, 2022. "Estimation of growth in fund models," Papers 2208.02573, arXiv.org.
  27. Solène Collot & Tobias Hemauer, 2021. "A literature review of new methods in empirical asset pricing: omitted-variable and errors-in-variable bias," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 35(1), pages 77-100, March.
  28. João Gabriel Moraes Souza & Daniel Tavares Castro & Yaohao Peng & Ivan Ricardo Gartner, 2024. "A Machine Learning-Based Analysis on the Causality of Financial Stress in Banking Institutions," Computational Economics, Springer;Society for Computational Economics, vol. 64(3), pages 1857-1890, September.
  29. Almeida, Caio & Freire, Gustavo, 2022. "Pricing of index options in incomplete markets," Journal of Financial Economics, Elsevier, vol. 144(1), pages 174-205.
  30. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
  31. Pedro M. Mirete-Ferrer & Alberto Garcia-Garcia & Juan Samuel Baixauli-Soler & Maria A. Prats, 2022. "A Review on Machine Learning for Asset Management," Risks, MDPI, vol. 10(4), pages 1-46, April.
  32. Sun, Chuanping, 2024. "Factor correlation and the cross section of asset returns: A correlation-robust machine learning approach," Journal of Empirical Finance, Elsevier, vol. 77(C).
  33. Chen, Yi-Hsuan & Kräussl, Roman & Verwijmeren, Patrick, 2023. "The pricing of digital art," CFS Working Paper Series 716, Center for Financial Studies (CFS).
  34. Malakhov, Alexey & Riley, Timothy B. & Yan, Qing, 2024. "Do hedge funds bet against beta?," International Review of Economics & Finance, Elsevier, vol. 93(PA), pages 1507-1525.
  35. Langlois, Hugues, 2023. "What matters in a characteristic?," Journal of Financial Economics, Elsevier, vol. 149(1), pages 52-72.
  36. Croux, Christophe & Jagtiani, Julapa & Korivi, Tarunsai & Vulanovic, Milos, 2020. "Important factors determining Fintech loan default: Evidence from a lendingclub consumer platform," Journal of Economic Behavior & Organization, Elsevier, vol. 173(C), pages 270-296.
  37. Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2021. "Economic Predictions With Big Data: The Illusion of Sparsity," Econometrica, Econometric Society, vol. 89(5), pages 2409-2437, September.
  38. Manresa, Elena & Peñaranda, Francisco & Sentana, Enrique, 2023. "Empirical evaluation of overspecified asset pricing models," Journal of Financial Economics, Elsevier, vol. 147(2), pages 338-351.
  39. Cederburg, Scott & O’Doherty, Michael S. & Wang, Feifei & Yan, Xuemin (Sterling), 2020. "On the performance of volatility-managed portfolios," Journal of Financial Economics, Elsevier, vol. 138(1), pages 95-117.
  40. Ni, Xuanming & Zheng, Tiantian & Zhao, Huimin & Zhu, Shushang, 2023. "High-dimensional portfolio optimization based on tree-structured factor model," Pacific-Basin Finance Journal, Elsevier, vol. 81(C).
  41. Guo, Li & Sang, Bo & Tu, Jun & Wang, Yu, 2024. "Cross-cryptocurrency return predictability," Journal of Economic Dynamics and Control, Elsevier, vol. 163(C).
  42. Uddin, Ajim & Yu, Dantong, 2020. "Latent factor model for asset pricing," Journal of Behavioral and Experimental Finance, Elsevier, vol. 27(C).
  43. Celso Brunetti & Marc Joëts & Valérie Mignon, 2023. "Reasons Behind Words: OPEC Narratives and the Oil Market," Working Papers hal-04196053, HAL.
  44. Andrew Y. Chen, 2019. "The Limits of p-Hacking : A Thought Experiment," Finance and Economics Discussion Series 2019-016, Board of Governors of the Federal Reserve System (U.S.).
  45. Rubesam, Alexandre, 2022. "Machine learning portfolios with equal risk contributions: Evidence from the Brazilian market," Emerging Markets Review, Elsevier, vol. 51(PB).
  46. Zhu, Lin & Jiang, Fuwei & Tang, Guohao & Jin, Fujing, 2024. "From macro to micro: Sparse macroeconomic risks and the cross-section of stock returns," International Review of Financial Analysis, Elsevier, vol. 95(PB).
  47. Siddhartha Chib & Simon C. Smith, 2024. "Factor Selection and Structural Breaks," Finance and Economics Discussion Series 2024-037, Board of Governors of the Federal Reserve System (U.S.).
  48. Raymond Kan & Xiaolu Wang & Guofu Zhou, 2022. "Optimal Portfolio Choice with Estimation Risk: No Risk-Free Asset Case," Management Science, INFORMS, vol. 68(3), pages 2047-2068, March.
  49. Chen, Andrew Y. & McCoy, Jack, 2024. "Missing values handling for machine learning portfolios," Journal of Financial Economics, Elsevier, vol. 155(C).
  50. Firoozye, Nikan & Tan, Vincent & Zohren, Stefan, 2023. "Canonical portfolios: Optimal asset and signal combination," Journal of Banking & Finance, Elsevier, vol. 154(C).
  51. Hoang, Daniel & Wiegratz, Kevin, 2022. "Machine learning methods in finance: Recent applications and prospects," Working Paper Series in Economics 158, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
  52. Alexandre Belloni & Mingli Chen & Oscar Hernan Madrid Padilla & Zixuan & Wang, 2019. "High Dimensional Latent Panel Quantile Regression with an Application to Asset Pricing," Papers 1912.02151, arXiv.org, revised Aug 2022.
  53. Schlag, Christian & Semenischev, Michael & Thimme, Julian, 2020. "Predictability and the cross-section of expected returns: A challenge for asset pricing models," SAFE Working Paper Series 289, Leibniz Institute for Financial Research SAFE.
  54. Khoa Hoang & Robert Faff, 2021. "Is the ex‐ante equity risk premium always positive? Evidence from a new conditional expectations model," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 61(1), pages 95-124, March.
  55. Joachim Freyberger & Andreas Neuhierl & Michael Weber, 2020. "Dissecting Characteristics Nonparametrically," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2326-2377.
  56. Chaieb, Ines & Langlois, Hugues & Scaillet, Olivier, 2021. "Factors and risk premia in individual international stock returns," Journal of Financial Economics, Elsevier, vol. 141(2), pages 669-692.
  57. Alois Weigand, 2019. "Machine learning in empirical asset pricing," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 33(1), pages 93-104, March.
  58. Guettler, Andre & Naeem, Mahvish & Norden, Lars & Van Doornik, Bernardus, 2024. "Pre-publication revisions of bank financial statements: A novel way to monitor banks?," Journal of Financial Intermediation, Elsevier, vol. 58(C).
  59. Ardia, David & Barras, Laurent & Gagliardini, Patrick & Scaillet, Olivier, 2024. "Is it alpha or beta? Decomposing hedge fund returns when models are misspecified," Journal of Financial Economics, Elsevier, vol. 154(C).
  60. Wan, Runzhe & Li, Yingying & Lu, Wenbin & Song, Rui, 2024. "Mining the factor zoo: Estimation of latent factor models with sufficient proxies," Journal of Econometrics, Elsevier, vol. 239(2).
  61. Bo Li & Sabri Boubaker & Zhenya Liu & Waël Louhichi & Yao Yao, 2023. "Exploring the Nonlinear Idiosyncratic Volatility Puzzle: Evidence from China," Computational Economics, Springer;Society for Computational Economics, vol. 62(2), pages 527-559, August.
  62. G Andrew Karolyi & Stijn Van Nieuwerburgh, 2020. "New Methods for the Cross-Section of Returns," Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 1879-1890.
  63. Luyang Chen & Markus Pelger & Jason Zhu, 2024. "Deep Learning in Asset Pricing," Management Science, INFORMS, vol. 70(2), pages 714-750, February.
  64. Arpit Gupta & Stijn Van Nieuwerburgh, 2019. "Valuing Private Equity Strip by Strip," NBER Working Papers 26514, National Bureau of Economic Research, Inc.
  65. Vedolin, Andrea & Korsaye, Sofonias Alemu & Trojani, Fabio, 2020. "The Global Factor Structure of Exchange Rates," CEPR Discussion Papers 15337, C.E.P.R. Discussion Papers.
  66. Peng, Yaohao & de Moraes Souza, João Gabriel, 2024. "Chaos, overfitting and equilibrium: To what extent can machine learning beat the financial market?," International Review of Financial Analysis, Elsevier, vol. 95(PB).
  67. Xiong, Ruoxuan & Pelger, Markus, 2023. "Large dimensional latent factor modeling with missing observations and applications to causal inference," Journal of Econometrics, Elsevier, vol. 233(1), pages 271-301.
  68. Evangelos Liaras & Michail Nerantzidis & Antonios Alexandridis, 2024. "Machine learning in accounting and finance research: a literature review," Review of Quantitative Finance and Accounting, Springer, vol. 63(4), pages 1431-1471, November.
  69. Gu, Shihao & Kelly, Bryan & Xiu, Dacheng, 2021. "Autoencoder asset pricing models," Journal of Econometrics, Elsevier, vol. 222(1), pages 429-450.
  70. Chen, Ding & Guo, Biao & Zhou, Guofu, 2023. "Firm fundamentals and the cross-section of implied volatility shapes," Journal of Financial Markets, Elsevier, vol. 63(C).
  71. Kaniel, Ron & Lin, Zihan & Pelger, Markus & Van Nieuwerburgh, Stijn, 2023. "Machine-learning the skill of mutual fund managers," Journal of Financial Economics, Elsevier, vol. 150(1), pages 94-138.
  72. Francisco Peñaranda & Enrique Sentana, 2024. "Portfolio management with big data," Working Papers wp2024_2411, CEMFI.
  73. Fieberg, Christian & Liedtke, Gerrit & Zaremba, Adam, 2024. "Cryptocurrency anomalies and economic constraints," International Review of Financial Analysis, Elsevier, vol. 94(C).
  74. Liao Zhu, 2021. "The Adaptive Multi-Factor Model and the Financial Market," Papers 2107.14410, arXiv.org, revised Aug 2021.
  75. Clarke, Charles, 2022. "The level, slope, and curve factor model for stocks," Journal of Financial Economics, Elsevier, vol. 143(1), pages 159-187.
  76. Bagnara, Matteo, 2024. "The economic value of cross-predictability: A performance-based measure," SAFE Working Paper Series 424, Leibniz Institute for Financial Research SAFE.
  77. Lu, Zhongjin & Malliaris, Steven & Qin, Zhongling, 2023. "Heterogeneous liquidity providers and night-minus-day return predictability," Journal of Financial Economics, Elsevier, vol. 148(3), pages 175-200.
  78. Baba-Yara, Fahiz & Boons, Martijn & Tamoni, Andrea, 2024. "Persistent and transitory components of firm characteristics: Implications for asset pricing," Journal of Financial Economics, Elsevier, vol. 154(C).
  79. Yan, Jingda & Yu, Jialin, 2023. "Cross-stock momentum and factor momentum," Journal of Financial Economics, Elsevier, vol. 150(2).
  80. Paul Schneider & Christian Wagner & Josef Zechner, 2020. "Low‐Risk Anomalies?," Journal of Finance, American Finance Association, vol. 75(5), pages 2673-2718, October.
  81. Alexander M. Chinco & Adam D. Clark-Joseph & Mao Ye, 2017. "Sparse Signals in the Cross-Section of Returns," NBER Working Papers 23933, National Bureau of Economic Research, Inc.
  82. Colak, Gonul & Fu, Mengchuan & Hasan, Iftekhar, 2022. "On modeling IPO failure risk," Economic Modelling, Elsevier, vol. 109(C).
  83. Yoshimasa Uematsu & Takashi Yamagata, 2020. "Inference in Weak Factor Models," ISER Discussion Paper 1080, Institute of Social and Economic Research, Osaka University.
  84. Ouyang, Ruolan & Zhang, Kun & Zhang, Xuan & Zhu, Dongming, 2024. "Can factor momentum beat momentum factor? Evidence from China," Finance Research Letters, Elsevier, vol. 62(PA).
  85. Oleg Rytchkov & Xun Zhong, 2020. "Information Aggregation and P-Hacking," Management Science, INFORMS, vol. 66(4), pages 1605-1626, April.
  86. Arpit Gupta & Stijn Van Nieuwerburgh, 2021. "Valuing Private Equity Investments Strip by Strip," Journal of Finance, American Finance Association, vol. 76(6), pages 3255-3307, December.
  87. Valentin Haddad & Serhiy Kozak & Shrihari Santosh, 2017. "Predicting Relative Returns," NBER Working Papers 23886, National Bureau of Economic Research, Inc.
  88. Hyuksoo Kim & Saejoon Kim, 2024. "Estimating Asset Pricing Models in the Presence of Cross-Sectionally Correlated Pricing Errors," Mathematics, MDPI, vol. 12(21), pages 1-21, November.
  89. Lettau, Martin & Pelger, Markus, 2020. "Estimating latent asset-pricing factors," Journal of Econometrics, Elsevier, vol. 218(1), pages 1-31.
  90. Božović, Miloš, 2024. "VIX-managed portfolios," International Review of Financial Analysis, Elsevier, vol. 95(PA).
  91. Söhnke M. Bartram & Harald Lohre & Peter F. Pope & Ananthalakshmi Ranganathan, 2021. "Navigating the factor zoo around the world: an institutional investor perspective," Journal of Business Economics, Springer, vol. 91(5), pages 655-703, July.
  92. Fuwei Jiang & Wei Ning & Hao Xue, 2023. "Factor Timing with Investor Sentiment," Annals of Economics and Finance, Society for AEF, vol. 24(2), pages 401-437, November.
  93. Alexander M. Chinco & Samuel M. Hartzmark & Abigail B. Sussman, 2020. "Necessary Evidence For A Risk Factor’s Relevance," NBER Working Papers 27227, National Bureau of Economic Research, Inc.
  94. Beckmeyer, Heiner & Wiedemann, Timo, 2022. "Recovering Missing Firm Characteristics with Attention-Based Machine Learning," VfS Annual Conference 2022 (Basel): Big Data in Economics 264135, Verein für Socialpolitik / German Economic Association.
  95. Smith, Simon C., 2022. "Time-variation, multiple testing, and the factor zoo," International Review of Financial Analysis, Elsevier, vol. 84(C).
  96. Feng, Guanhao & He, Jingyu, 2022. "Factor investing: A Bayesian hierarchical approach," Journal of Econometrics, Elsevier, vol. 230(1), pages 183-200.
  97. Georges, Christophre & Pereira, Javier, 2021. "Market stability with machine learning agents," Journal of Economic Dynamics and Control, Elsevier, vol. 122(C).
  98. van Binsbergen, Jules H. & Boons, Martijn & Opp, Christian C. & Tamoni, Andrea, 2023. "Dynamic asset (mis)pricing: Build-up versus resolution anomalies," Journal of Financial Economics, Elsevier, vol. 147(2), pages 406-431.
  99. Carter Davis, 2023. "The Elasticity of Quantitative Investment," Papers 2303.14533, arXiv.org, revised Sep 2024.
  100. Elena Manresa & Francisco Peñaranda & Enrique Sentana, 2017. "Empirical Evaluation of Overspecified Asset Pricing Models," Working Papers wp2018_1711, CEMFI.
  101. Andrew Y. Chen & Jack McCoy, 2022. "Missing Values Handling for Machine Learning Portfolios," Papers 2207.13071, arXiv.org, revised Jan 2024.
  102. Kristoffer Pons Bertelsen, 2022. "The Prior Adaptive Group Lasso and the Factor Zoo," CREATES Research Papers 2022-05, Department of Economics and Business Economics, Aarhus University.
  103. Valentin Haddad & Serhiy Kozak & Shrihari Santosh & Stijn Van Nieuwerburgh, 2020. "Factor Timing," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 1980-2018.
  104. Bank, Matthias & Insam, Franz, 2021. "Corporate aging and changes in the pricing of stock characteristics," Finance Research Letters, Elsevier, vol. 42(C).
  105. Birru, Justin & Gokkaya, Sinan & Liu, Xi & Markov, Stanimir, 2024. "Quants and market anomalies," Journal of Accounting and Economics, Elsevier, vol. 78(1).
  106. Caldeira, João F. & Santos, André A.P. & Torrent, Hudson S., 2023. "Semiparametric portfolios: Improving portfolio performance by exploiting non-linearities in firm characteristics," Economic Modelling, Elsevier, vol. 122(C).
  107. Guanhao Feng & Jingyu He & Nicholas G. Polson, 2018. "Deep Learning for Predicting Asset Returns," Papers 1804.09314, arXiv.org, revised Apr 2018.
  108. Kelly, Bryan T. & Pruitt, Seth & Su, Yinan, 2019. "Characteristics are covariances: A unified model of risk and return," Journal of Financial Economics, Elsevier, vol. 134(3), pages 501-524.
  109. Vigo Pereira, Caio, 2021. "Portfolio efficiency with high-dimensional data as conditioning information," International Review of Financial Analysis, Elsevier, vol. 77(C).
  110. Bagnara, Matteo & Goodarzi, Milad, 2023. "Clustering-based sector investing," SAFE Working Paper Series 397, Leibniz Institute for Financial Research SAFE.
  111. Hoechle, Daniel & Schmid, Markus & Zimmermann, Heinz, 2017. "Does Unobservable Heterogeneity Matter for Portfolio-Based Asset Pricing Tests?," Working Papers on Finance 1717, University of St. Gallen, School of Finance, revised Mar 2020.
  112. Mykola Babiak & Jozef Barunik, 2020. "Deep Learning, Predictability, and Optimal Portfolio Returns," Papers 2009.03394, arXiv.org, revised Jul 2021.
  113. Wang, Feifei & Yan, Xuemin Sterling, 2021. "Downside risk and the performance of volatility-managed portfolios," Journal of Banking & Finance, Elsevier, vol. 131(C).
  114. Alex R. Horenstein, 2021. "The Unintended Impact of Academic Research on Asset Returns: The Capital Asset Pricing Model Alpha," Management Science, INFORMS, vol. 67(6), pages 3655-3673, June.
  115. Guo, Xu & Lin, Hai & Wu, Chunchi & Zhou, Guofu, 2022. "Predictive information in corporate bond yields," Journal of Financial Markets, Elsevier, vol. 59(PB).
  116. Grammig, Joachim & Hanenberg, Constantin & Schlag, Christian & Sönksen, Jantje, 2020. "Diverging roads: Theory-based vs. machine learning-implied stock risk premia," University of Tübingen Working Papers in Business and Economics 130, University of Tuebingen, Faculty of Economics and Social Sciences, School of Business and Economics.
  117. Francesco Bianchi & Sydney C. Ludvigson & Sai Ma, 2022. "Belief Distortions and Macroeconomic Fluctuations," American Economic Review, American Economic Association, vol. 112(7), pages 2269-2315, July.
  118. Huang, Dashan & Li, Jiangyuan & Wang, Liyao, 2021. "Are disagreements agreeable? Evidence from information aggregation," Journal of Financial Economics, Elsevier, vol. 141(1), pages 83-101.
  119. Markus Pelger, 2020. "Understanding Systematic Risk: A High‐Frequency Approach," Journal of Finance, American Finance Association, vol. 75(4), pages 2179-2220, August.
  120. Ai He & Guofu Zhou, 2023. "Diagnostics for asset pricing models," Financial Management, Financial Management Association International, vol. 52(4), pages 617-642, December.
  121. Cássio Roberto de Andrade Alves & Márcio Laurini, 2023. "Estimating the Capital Asset Pricing Model with Many Instruments: A Bayesian Shrinkage Approach," Mathematics, MDPI, vol. 11(17), pages 1-20, September.
  122. Liu, Tingting & Lu, Zhongjin (Gene) & Shu, Tao & Wei, Fengrong, 2022. "Unique bidder-target relatedness and synergies creation in mergers and acquisitions," Journal of Corporate Finance, Elsevier, vol. 73(C).
  123. Lavko, Matus & Klein, Tony & Walther, Thomas, 2023. "Reinforcement Learning and Portfolio Allocation: Challenging Traditional Allocation Methods," QBS Working Paper Series 2023/01, Queen's University Belfast, Queen's Business School.
  124. Wolfgang Drobetz & Tizian Otto, 2021. "Empirical asset pricing via machine learning: evidence from the European stock market," Journal of Asset Management, Palgrave Macmillan, vol. 22(7), pages 507-538, December.
  125. De Nard, Gianluca & Zhao, Zhao, 2023. "Using, taming or avoiding the factor zoo? A double-shrinkage estimator for covariance matrices," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 23-35.
  126. Doron Avramov & Si Cheng & Lior Metzker, 2023. "Machine Learning vs. Economic Restrictions: Evidence from Stock Return Predictability," Management Science, INFORMS, vol. 69(5), pages 2587-2619, May.
  127. Ma, Tian & Liao, Cunfei & Jiang, Fuwei, 2024. "Factor momentum in the Chinese stock market," Journal of Empirical Finance, Elsevier, vol. 75(C).
  128. Zheng Tracy Ke & Bryan T. Kelly & Dacheng Xiu, 2019. "Predicting Returns With Text Data," NBER Working Papers 26186, National Bureau of Economic Research, Inc.
  129. Fousseni Chabi-Yo & Markus Huggenberger & Florian Weigert, 2019. "Multivariate Crash Risk," Working Papers on Finance 1901, University of St. Gallen, School of Finance.
  130. Lioui, Abraham & Tarelli, Andrea, 2022. "Chasing the ESG factor," Journal of Banking & Finance, Elsevier, vol. 139(C).
  131. Gospodinov, Nikolay & Maasoumi, Esfandiar, 2021. "Generalized aggregation of misspecified models: With an application to asset pricing," Journal of Econometrics, Elsevier, vol. 222(1), pages 451-467.
  132. Guanhao Feng & Jingyu He, 2019. "Factor Investing: A Bayesian Hierarchical Approach," Papers 1902.01015, arXiv.org, revised Sep 2020.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.