IDEAS home Printed from https://ideas.repec.org/a/eee/finana/v95y2024ipbs105752192400406x.html
   My bibliography  Save this article

Chaos, overfitting and equilibrium: To what extent can machine learning beat the financial market?

Author

Listed:
  • Peng, Yaohao
  • de Moraes Souza, João Gabriel

Abstract

In this paper, we applied 10 technical analysis indicators to predict stock price movement directions using support vector machines, investigating the effects of hyperparameter variations on the out-of-sample classification performance and the profitability of the resulting trading strategies. We collected daily data between January 1st, 2018, and March 31st, 2023 for the 30 firms that compose the Dow Jones Industrial Average (DJIA). Our results indicated that the out-of-sample accuracy converged to 50%, while a small percentage (13.63% for the pre-COVID period and 23.16% for the post-COVID period) of the hyperparameter combinations yielded gains above the buy-and-hold strategy; on the other hand, no clear patterns about the best-performing hyperparameter combinations emerged, as the behavior of the out-of-sample performance was found to exhibit high sensitive dependence to the hyperparameters settings in comparison to its in-sample counterpart. The outcomes of our empirical analysis are consistent with both classic results in the finance literature (such as the Efficient Market Hypothesis) and empirical setbacks commonly seen in machine learning experiments, notably the occurrence of overfitting under the incorporation of high-dimensional non-linear interactions.

Suggested Citation

  • Peng, Yaohao & de Moraes Souza, João Gabriel, 2024. "Chaos, overfitting and equilibrium: To what extent can machine learning beat the financial market?," International Review of Financial Analysis, Elsevier, vol. 95(PB).
  • Handle: RePEc:eee:finana:v:95:y:2024:i:pb:s105752192400406x
    DOI: 10.1016/j.irfa.2024.103474
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S105752192400406X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.irfa.2024.103474?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bazán-Palomino, Walter & Svogun, Daniel, 2023. "On the drivers of technical analysis profits in cryptocurrency markets: A Distributed Lag approach," International Review of Financial Analysis, Elsevier, vol. 86(C).
    2. Masafumi Nakano & Akihiko Takahashi & Soichiro Takahashi, 2018. "Bitcoin technical trading with artificial neural network," CARF F-Series CARF-F-441, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    3. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Finance, European Finance Association, vol. 33(5), pages 2223-2273.
    4. Masafumi Nakano & Akihiko Takahashi & Soichiro Takahashi, 2018. "Bitcoin technical trading with artificial neural network," CIRJE F-Series CIRJE-F-1078, CIRJE, Faculty of Economics, University of Tokyo.
    5. Kozak, Serhiy & Nagel, Stefan & Santosh, Shrihari, 2020. "Shrinking the cross-section," Journal of Financial Economics, Elsevier, vol. 135(2), pages 271-292.
    6. Peng Yaohao & Pedro Henrique Melo Albuquerque, 2019. "Non-Linear Interactions and Exchange Rate Prediction: Empirical Evidence Using Support Vector Regression," Applied Mathematical Finance, Taylor & Francis Journals, vol. 26(1), pages 69-100, January.
    7. Alhashel, Bader S. & Almudhaf, Fahad W. & Hansz, J. Andrew, 2018. "Can technical analysis generate superior returns in securitized property markets? Evidence from East Asia markets," Pacific-Basin Finance Journal, Elsevier, vol. 47(C), pages 92-108.
    8. Coakley, Jerry & Marzano, Michele & Nankervis, John, 2016. "How profitable are FX technical trading rules?," International Review of Financial Analysis, Elsevier, vol. 45(C), pages 273-282.
    9. Thomas Renault, 2020. "Sentiment analysis and machine learning in finance: a comparison of methods and models on one million messages," Digital Finance, Springer, vol. 2(1), pages 1-13, September.
    10. Vecchi, Edoardo & Berra, Gabriele & Albrecht, Steffen & Gagliardini, Patrick & Horenko, Illia, 2023. "Entropic approximate learning for financial decision-making in the small data regime," Research in International Business and Finance, Elsevier, vol. 65(C).
    11. Niklas Bussmann & Paolo Giudici & Dimitri Marinelli & Jochen Papenbrock, 2021. "Explainable Machine Learning in Credit Risk Management," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 203-216, January.
    12. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
    13. Jackson, Antony & Ladley, Daniel, 2016. "Market ecologies: The effect of information on the interaction and profitability of technical trading strategies," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 270-280.
    14. Ahmet Murat Ozbayoglu & Mehmet Ugur Gudelek & Omer Berat Sezer, 2020. "Deep Learning for Financial Applications : A Survey," Papers 2002.05786, arXiv.org.
    15. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    16. Peng, Yaohao & Nagata, Mateus Hiro, 2020. "An empirical overview of nonlinearity and overfitting in machine learning using COVID-19 data," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    17. Jan De Spiegeleer & Dilip B. Madan & Sofie Reyners & Wim Schoutens, 2018. "Machine learning for quantitative finance: fast derivative pricing, hedging and fitting," Quantitative Finance, Taylor & Francis Journals, vol. 18(10), pages 1635-1643, October.
    18. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    19. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    20. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    21. Masafumi Nakano & Akihiko Takahashi & Soichiro Takahashi, 2018. "Bitcoin technical trading with artificial neural network," CARF F-Series CARF-F-430, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    22. Zarrabi, Nima & Snaith, Stuart & Coakley, Jerry, 2017. "FX technical trading rules can be profitable sometimes!," International Review of Financial Analysis, Elsevier, vol. 49(C), pages 113-127.
    23. Gerritsen, Dirk F., 2016. "Are chartists artists? The determinants and profitability of recommendations based on technical analysis," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 179-196.
    24. Germán Creamer, 2012. "Model calibration and automated trading agent for Euro futures," Quantitative Finance, Taylor & Francis Journals, vol. 12(4), pages 531-545, December.
    25. Tao, Ran & Su, Chi-Wei & Xiao, Yidong & Dai, Ke & Khalid, Fahad, 2021. "Robo advisors, algorithmic trading and investment management: Wonders of fourth industrial revolution in financial markets," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    26. Akshit Kurani & Pavan Doshi & Aarya Vakharia & Manan Shah, 2023. "A Comprehensive Comparative Study of Artificial Neural Network (ANN) and Support Vector Machines (SVM) on Stock Forecasting," Annals of Data Science, Springer, vol. 10(1), pages 183-208, February.
    27. Nakano, Masafumi & Takahashi, Akihiko & Takahashi, Soichiro, 2018. "Bitcoin technical trading with artificial neural network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 587-609.
    28. Marija Gorenc Novak & Dejan Velušček, 2016. "Prediction of stock price movement based on daily high prices," Quantitative Finance, Taylor & Francis Journals, vol. 16(5), pages 793-826, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gradojevic, Nikola & Kukolj, Dragan & Adcock, Robert & Djakovic, Vladimir, 2023. "Forecasting Bitcoin with technical analysis: A not-so-random forest?," International Journal of Forecasting, Elsevier, vol. 39(1), pages 1-17.
    2. Goodell, John W. & Ben Jabeur, Sami & Saâdaoui, Foued & Nasir, Muhammad Ali, 2023. "Explainable artificial intelligence modeling to forecast bitcoin prices," International Review of Financial Analysis, Elsevier, vol. 88(C).
    3. Nagula, Pavan Kumar & Alexakis, Christos, 2022. "A new hybrid machine learning model for predicting the bitcoin (BTC-USD) price," Journal of Behavioral and Experimental Finance, Elsevier, vol. 36(C).
    4. João Gabriel Moraes Souza & Daniel Tavares Castro & Yaohao Peng & Ivan Ricardo Gartner, 2024. "A Machine Learning-Based Analysis on the Causality of Financial Stress in Banking Institutions," Computational Economics, Springer;Society for Computational Economics, vol. 64(3), pages 1857-1890, September.
    5. Evangelos Liaras & Michail Nerantzidis & Antonios Alexandridis, 2024. "Machine learning in accounting and finance research: a literature review," Review of Quantitative Finance and Accounting, Springer, vol. 63(4), pages 1431-1471, November.
    6. Paul Handro & Bogdan Dima, 2024. "Analyzing Financial Markets Efficiency: Insights from a Bibliometric and Content Review," Journal of Financial Studies, Institute of Financial Studies, vol. 16(9), pages 119-175, May.
    7. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    8. Erdinc Akyildirim & Oguzhan Cepni & Shaen Corbet & Gazi Salah Uddin, 2023. "Forecasting mid-price movement of Bitcoin futures using machine learning," Annals of Operations Research, Springer, vol. 330(1), pages 553-584, November.
    9. Julien Chevallier & Dominique Guégan & Stéphane Goutte, 2021. "Is It Possible to Forecast the Price of Bitcoin?," Forecasting, MDPI, vol. 3(2), pages 1-44, May.
    10. Hoang, Daniel & Wiegratz, Kevin, 2022. "Machine learning methods in finance: Recent applications and prospects," Working Paper Series in Economics 158, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
    11. Goodell, John W. & Kumar, Satish & Lim, Weng Marc & Pattnaik, Debidutta, 2021. "Artificial intelligence and machine learning in finance: Identifying foundations, themes, and research clusters from bibliometric analysis," Journal of Behavioral and Experimental Finance, Elsevier, vol. 32(C).
    12. Masafumi Nakano & Akihiko Takahashi, 2019. "A New Investment Method with AutoEncoder: Applications to Cryptocurrencies," CIRJE F-Series CIRJE-F-1128, CIRJE, Faculty of Economics, University of Tokyo.
    13. Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
    14. Vasu Kalariya & Pushpendra Parmar & Patel Jay & Sudeep Tanwar & Maria Simona Raboaca & Fayez Alqahtani & Amr Tolba & Bogdan-Constantin Neagu, 2022. "Stochastic Neural Networks-Based Algorithmic Trading for the Cryptocurrency Market," Mathematics, MDPI, vol. 10(9), pages 1-15, April.
    15. Jlassi, Nabila Boukef & Jeribi, Ahmed & Lahiani, Amine & Mefteh-Wali, Salma, 2023. "Subsample analysis of stock market – cryptocurrency returns tail dependence: A copula approach for the tails," Finance Research Letters, Elsevier, vol. 58(PA).
    16. Helder Sebastião & Pedro Godinho, 2021. "Forecasting and trading cryptocurrencies with machine learning under changing market conditions," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-30, December.
    17. Suhwan Ji & Jongmin Kim & Hyeonseung Im, 2019. "A Comparative Study of Bitcoin Price Prediction Using Deep Learning," Mathematics, MDPI, vol. 7(10), pages 1-20, September.
    18. Helder Miguel Correia Virtuoso Sebastião & Paulo José Osório Rupino Da Cunha & Pedro Manuel Cortesão Godinho, 2021. "Cryptocurrencies and blockchain. Overview and future perspectives," International Journal of Economics and Business Research, Inderscience Enterprises Ltd, vol. 21(3), pages 305-342.
    19. Uddin, Ajim & Yu, Dantong, 2020. "Latent factor model for asset pricing," Journal of Behavioral and Experimental Finance, Elsevier, vol. 27(C).
    20. Krzysztof Piasecki & Michał Dominik Stasiak, 2020. "Optimization Parameters of Trading System with Constant Modulus of Unit Return," Mathematics, MDPI, vol. 8(8), pages 1-17, August.

    More about this item

    Keywords

    Time series forecasting; Efficient market hypothesis; Bias–variance dilemma; Trading profitability; Support vector machine;
    All these keywords.

    JEL classification:

    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finana:v:95:y:2024:i:pb:s105752192400406x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620166 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.