IDEAS home Printed from https://ideas.repec.org/r/ivi/wpasad/1997-22.html
   My bibliography  Save this item

Identification, estimation and testing of conditionally heteroskedastic factor models

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Numan Ülkü & Enzo Weber, 2014. "Identifying the Interaction between Foreign Investor Flows and Emerging Stock Market Returns," Review of Finance, European Finance Association, vol. 18(4), pages 1541-1581.
  2. Caporale, Guglielmo Maria & Cipollini, Andrea & Demetriades, Panicos O., 2005. "Monetary policy and the exchange rate during the Asian crisis: identification through heteroscedasticity," Journal of International Money and Finance, Elsevier, vol. 24(1), pages 39-53, February.
  3. Till Strohsal & Enzo Weber, 2012. "The Signal of Volatility," SFB 649 Discussion Papers SFB649DP2012-043, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  4. Michael Ehrmann & Marcel Fratzscher & Roberto Rigobon, 2011. "Stocks, bonds, money markets and exchange rates: measuring international financial transmission," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(6), pages 948-974, September.
  5. Lütkepohl, Helmut & Netšunajev, Aleksei, 2017. "Structural vector autoregressions with heteroskedasticity: A review of different volatility models," Econometrics and Statistics, Elsevier, vol. 1(C), pages 2-18.
  6. Normandin, Michel & Phaneuf, Louis, 2004. "Monetary policy shocks:: Testing identification conditions under time-varying conditional volatility," Journal of Monetary Economics, Elsevier, vol. 51(6), pages 1217-1243, September.
  7. Sofia Anyfantaki & Antonis Demos, 2016. "Estimation and Properties of a Time-Varying EGARCH(1,1) in Mean Model," Econometric Reviews, Taylor & Francis Journals, vol. 35(2), pages 293-310, February.
  8. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
  9. Lütkepohl, Helmut & Netšunajev, Aleksei, 2015. "Structural vector autoregressions with heteroskedasticity: A comparison of different volatility models," SFB 649 Discussion Papers 2015-015, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
  10. Michel Normandin, 1999. "The Integration of Financial Markets and the Conduct of Monetary Policies: The Case of Canada and the United States," Cahiers de recherche CREFE / CREFE Working Papers 67, CREFE, Université du Québec à Montréal.
  11. Felices, Guillermo & Grisse, Christian & Yang, Jing, 2009. "International financial transmission: emerging and mature markets," Bank of England working papers 373, Bank of England.
  12. Emanuele BACCHIOCCHI, 2010. "Identification through heteroskedasticity in a likelihood-based approach: some theoretical results," Departmental Working Papers 2010-38, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
  13. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
  14. Catherine Doz & Eric Renault, 2004. "Conditionaly Heteroskedastic Factor Models : Identificationand Instrumental variables Estmation," THEMA Working Papers 2004-13, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
  15. Caporale, Guglielmo Maria & Cipollini, Andrea & Spagnolo, Nicola, 2005. "Testing for contagion: a conditional correlation analysis," Journal of Empirical Finance, Elsevier, vol. 12(3), pages 476-489, June.
  16. Enzo Weber, 2007. "Volatility and Causality in Asia Pacific Financial Markets," SFB 649 Discussion Papers SFB649DP2007-004, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  17. Ricardo Cao & Alicia Heras & Angeles Saavedra, 2009. "The uncertainties about the relationships risk–return–volatility in the Spanish stock market," Computational Statistics, Springer, vol. 24(1), pages 113-126, February.
  18. Anna Pavlova & Roberto Rigobon, 2007. "Asset Prices and Exchange Rates," The Review of Financial Studies, Society for Financial Studies, vol. 20(4), pages 1139-1180.
  19. Weber, Enzo & Zhang, Yanqun, 2012. "Common influences, spillover and integration in Chinese stock markets," Journal of Empirical Finance, Elsevier, vol. 19(3), pages 382-394.
  20. Helmut Herwartz & Martin Plödt, 2016. "Simulation Evidence on Theory-based and Statistical Identification under Volatility Breaks," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 78(1), pages 94-112, February.
  21. Rigobon, Roberto, 2002. "The curse of non-investment grade countries," Journal of Development Economics, Elsevier, vol. 69(2), pages 423-449, December.
  22. Joshua Chan & Eric Eisenstat & Xuewen Yu, 2022. "Large Bayesian VARs with Factor Stochastic Volatility: Identification, Order Invariance and Structural Analysis," Papers 2207.03988, arXiv.org.
  23. Bouakez, Hafedh & Normandin, Michel, 2010. "Fluctuations in the foreign exchange market: How important are monetary policy shocks?," Journal of International Economics, Elsevier, vol. 81(1), pages 139-153, May.
  24. Arthur Lewbel, 2012. "Using Heteroscedasticity to Identify and Estimate Mismeasured and Endogenous Regressor Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(1), pages 67-80.
  25. Weber, Enzo, 2009. "Financial Contagion, Vulnerability and Information Flow: Empirical Identification," University of Regensburg Working Papers in Business, Economics and Management Information Systems 431, University of Regensburg, Department of Economics.
  26. Carriero, Andrea & Clark, Todd E. & Marcellino, Massimiliano, 2021. "Using time-varying volatility for identification in Vector Autoregressions: An application to endogenous uncertainty," Journal of Econometrics, Elsevier, vol. 225(1), pages 47-73.
  27. Sentana, Enrique & Calzolari, Giorgio & Fiorentini, Gabriele, 2008. "Indirect estimation of large conditionally heteroskedastic factor models, with an application to the Dow 30 stocks," Journal of Econometrics, Elsevier, vol. 146(1), pages 10-25, September.
  28. Dante Amengual & Gabriele Fiorentini & Enrique Sentana, 2022. "Moment tests of independent components," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 13(1), pages 429-474, May.
  29. repec:ehl:lserod:53906 is not listed on IDEAS
  30. Antonis Demos & George Vasillelis, 2007. "U.K. Stock Market Inefficiencies and the Risk Premium," Multinational Finance Journal, Multinational Finance Journal, vol. 11(1-2), pages 97-122, March-Jun.
  31. Jahn, Elke & Weber, Enzo, 2016. "Identifying The Substitution Effect Of Temporary Agency Employment," Macroeconomic Dynamics, Cambridge University Press, vol. 20(5), pages 1264-1281, July.
  32. Gonzalez-Hermosillo Gonzalez, B.M., 2008. "Transmission of shocks across global financial markets : The role of contagion and investors' risk appetite," Other publications TiSEM d684f3c7-7ad8-4e93-88cf-a, Tilburg University, School of Economics and Management.
  33. Helmut Lütkepohl & Thore Schlaak, 2018. "Choosing Between Different Time‐Varying Volatility Models for Structural Vector Autoregressive Analysis," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 80(4), pages 715-735, August.
  34. Soloschenko, Max & Weber, Enzo, 2014. "Capturing the Interaction of Trend, Cycle, Expectations and Risk Premia in the US Term Structure," University of Regensburg Working Papers in Business, Economics and Management Information Systems 475, University of Regensburg, Department of Economics.
  35. Gabriele Fiorentini & Enrique Sentana & Neil Shephard, 2004. "Likelihood-Based Estimation of Latent Generalized ARCH Structures," Econometrica, Econometric Society, vol. 72(5), pages 1481-1517, 09.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.