IDEAS home Printed from https://ideas.repec.org/a/taf/jnlbes/v30y2012i1p67-80.html
   My bibliography  Save this article

Using Heteroscedasticity to Identify and Estimate Mismeasured and Endogenous Regressor Models

Author

Listed:
  • Arthur Lewbel

Abstract

This article proposes a new method of obtaining identification in mismeasured regressor models, triangular systems, and simultaneous equation systems. The method may be used in applications where other sources of identification, such as instrumental variables or repeated measurements, are not available. Associated estimators take the form of two-stage least squares or generalized method of moments. Identification comes from a heteroscedastic covariance restriction that is shown to be a feature of many models of endogeneity or mismeasurement. Identification is also obtained for semiparametric partly linear models, and associated estimators are provided. Set identification bounds are derived for cases where point-identifying assumptions fail to hold. An empirical application estimating Engel curves is provided.

Suggested Citation

  • Arthur Lewbel, 2012. "Using Heteroscedasticity to Identify and Estimate Mismeasured and Endogenous Regressor Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(1), pages 67-80.
  • Handle: RePEc:taf:jnlbes:v:30:y:2012:i:1:p:67-80
    DOI: 10.1080/07350015.2012.643126
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07350015.2012.643126
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07350015.2012.643126?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Blanchard, Olivier Jean & Quah, Danny, 1989. "The Dynamic Effects of Aggregate Demand and Supply Disturbances," American Economic Review, American Economic Association, vol. 79(4), pages 655-673, September.
    2. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    3. Klein, Roger & Vella, Francis, 2010. "Estimating a class of triangular simultaneous equations models without exclusion restrictions," Journal of Econometrics, Elsevier, vol. 154(2), pages 154-164, February.
    4. Rigobon, Roberto, 2002. "The curse of non-investment grade countries," Journal of Development Economics, Elsevier, vol. 69(2), pages 423-449, December.
    5. Otsu, Taisuke, 2011. "Empirical Likelihood Estimation Of Conditional Moment Restriction Models With Unknown Functions," Econometric Theory, Cambridge University Press, vol. 27(1), pages 8-46, February.
    6. Arthur Lewbel, 1997. "Constructing Instruments for Regressions with Measurement Error when no Additional Data are Available, with an Application to Patents and R&D," Econometrica, Econometric Society, vol. 65(5), pages 1201-1214, September.
    7. Erickson, Timothy & Whited, Toni M., 2002. "Two-Step Gmm Estimation Of The Errors-In-Variables Model Using High-Order Moments," Econometric Theory, Cambridge University Press, vol. 18(3), pages 776-799, June.
    8. Chunrong Ai & Xiaohong Chen, 2003. "Efficient Estimation of Models with Conditional Moment Restrictions Containing Unknown Functions," Econometrica, Econometric Society, vol. 71(6), pages 1795-1843, November.
    9. Todd Prono, 2008. "GARCH-based identification and estimation of triangular systems," Supervisory Research and Analysis Working Papers QAU08-4, Federal Reserve Bank of Boston.
    10. David Card, 1993. "Using Geographic Variation in College Proximity to Estimate the Return to Schooling," Working Papers 696, Princeton University, Department of Economics, Industrial Relations Section..
    11. Cragg, John G. & Donald, Stephen G., 1997. "Inferring the rank of a matrix," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 223-250.
    12. Sentana, Enrique & Fiorentini, Gabriele, 2001. "Identification, estimation and testing of conditionally heteroskedastic factor models," Journal of Econometrics, Elsevier, vol. 102(2), pages 143-164, June.
    13. Chamberlain, Gary, 1987. "Asymptotic efficiency in estimation with conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 34(3), pages 305-334, March.
    14. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 31(3), pages 129-137.
    15. Dagenais, Marcel G. & Dagenais, Denyse L., 1997. "Higher moment estimators for linear regression models with errors in the variables," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 193-221.
    16. Breusch, T S & Pagan, A R, 1979. "A Simple Test for Heteroscedasticity and Random Coefficient Variation," Econometrica, Econometric Society, vol. 47(5), pages 1287-1294, September.
    17. Hausman, Jerry A., 1983. "Specification and estimation of simultaneous equation models," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 1, chapter 7, pages 391-448, Elsevier.
    18. Heckman, James J, 1974. "Shadow Prices, Market Wages, and Labor Supply," Econometrica, Econometric Society, vol. 42(4), pages 679-694, July.
    19. Roberto Rigobon, 2003. "Identification Through Heteroskedasticity," The Review of Economics and Statistics, MIT Press, vol. 85(4), pages 777-792, November.
    20. Whitney K. Newey & James L. Powell, 2003. "Instrumental Variable Estimation of Nonparametric Models," Econometrica, Econometric Society, vol. 71(5), pages 1565-1578, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Welsch & David Zimmer, 2010. "The Effect of Health and Poverty on Early Childhood Cognitive Development," Atlantic Economic Journal, Springer;International Atlantic Economic Society, vol. 38(1), pages 37-49, March.
    2. Joseph J. Sabia, 2007. "Reading, Writing, And Sex: The Effect Of Losing Virginity On Academic Performance," Economic Inquiry, Western Economic Association International, vol. 45(4), pages 647-670, October.
    3. Christopher F Baum & Arthur Lewbel, 2019. "Advice on using heteroskedasticity-based identification," Stata Journal, StataCorp LP, vol. 19(4), pages 757-767, December.
    4. Todd Prono, 2008. "GARCH-based identification and estimation of triangular systems," Supervisory Research and Analysis Working Papers QAU08-4, Federal Reserve Bank of Boston.
    5. Lewbel, Arthur, 2018. "Identification and estimation using heteroscedasticity without instruments: The binary endogenous regressor case," Economics Letters, Elsevier, vol. 165(C), pages 10-12.
    6. Hu, Yingyao & Schennach, Susanne & Shiu, Ji-Liang, 2022. "Identification of nonparametric monotonic regression models with continuous nonclassical measurement errors," Journal of Econometrics, Elsevier, vol. 226(2), pages 269-294.
    7. Arthur Lewbel, 2007. "Estimation of Average Treatment Effects with Misclassification," Econometrica, Econometric Society, vol. 75(2), pages 537-551, March.
    8. Arthur Lewbel, 2019. "The Identification Zoo: Meanings of Identification in Econometrics," Journal of Economic Literature, American Economic Association, vol. 57(4), pages 835-903, December.
    9. Jin Li & Ye Luo & Xiaowei Zhang, 2021. "Causal Reinforcement Learning: An Instrumental Variable Approach," Papers 2103.04021, arXiv.org, revised Sep 2022.
    10. Bonhomme, Stphane & Robin, Jean-Marc, 2009. "Consistent noisy independent component analysis," Journal of Econometrics, Elsevier, vol. 149(1), pages 12-25, April.
    11. Xiaohong Chen & Andres Santos, 2018. "Overidentification in Regular Models," Econometrica, Econometric Society, vol. 86(5), pages 1771-1817, September.
    12. Xiaohong Chen & Victor Chernozhukov & Sokbae Lee & Whitney K. Newey, 2014. "Local Identification of Nonparametric and Semiparametric Models," Econometrica, Econometric Society, vol. 82(2), pages 785-809, March.
    13. Klein, Roger & Vella, Francis, 2010. "Estimating a class of triangular simultaneous equations models without exclusion restrictions," Journal of Econometrics, Elsevier, vol. 154(2), pages 154-164, February.
    14. Breunig, Christoph & Mammen, Enno & Simoni, Anna, 2018. "Nonparametric estimation in case of endogenous selection," Journal of Econometrics, Elsevier, vol. 202(2), pages 268-285.
    15. Dungey, Mardi & Milunovich, George & Thorp, Susan & Yang, Minxian, 2015. "Endogenous crisis dating and contagion using smooth transition structural GARCH," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 71-79.
    16. Guilhem Bascle, 2008. "Controlling for endogeneity with instrumental variables in strategic management research," Post-Print hal-00576795, HAL.
    17. Hall, George & Rust, John, 2021. "Estimation of endogenously sampled time series: The case of commodity price speculation in the steel market," Journal of Econometrics, Elsevier, vol. 222(1), pages 219-243.
    18. Gayle, George-Levi & Viauroux, Christelle, 2007. "Root-N consistent semiparametric estimators of a dynamic panel-sample-selection model," Journal of Econometrics, Elsevier, vol. 141(1), pages 179-212, November.
    19. Xiaohong Chen & Yingyao Hu & Arthur Lewbel, 2007. "Nonparametric Identification and Estimation of Nonclassical Errors-in-Variables Models Without Additional Information," Boston College Working Papers in Economics 676, Boston College Department of Economics.
    20. Yu, Ping & Phillips, Peter C.B., 2018. "Threshold regression with endogeneity," Journal of Econometrics, Elsevier, vol. 203(1), pages 50-68.

    More about this item

    JEL classification:

    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • D12 - Microeconomics - - Household Behavior - - - Consumer Economics: Empirical Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:30:y:2012:i:1:p:67-80. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.