IDEAS home Printed from https://ideas.repec.org/a/eee/ecosta/v1y2017icp2-18.html
   My bibliography  Save this article

Structural vector autoregressions with heteroskedasticity: A review of different volatility models

Author

Listed:
  • Lütkepohl, Helmut
  • Netšunajev, Aleksei

Abstract

Changes in residual volatility are often used for identifying structural shocks in vector autoregressive (VAR) analysis. A number of different models for heteroskedasticity or conditional heteroskedasticity are proposed and used in applications in this context. The different volatility models are reviewed and their advantages and drawbacks are indicated. An application investigating the interaction between U.S. monetary policy and the stock market illustrates the related issues.

Suggested Citation

  • Lütkepohl, Helmut & Netšunajev, Aleksei, 2017. "Structural vector autoregressions with heteroskedasticity: A review of different volatility models," Econometrics and Statistics, Elsevier, vol. 1(C), pages 2-18.
  • Handle: RePEc:eee:ecosta:v:1:y:2017:i:c:p:2-18
    DOI: 10.1016/j.ecosta.2016.05.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2452306216300223
    Download Restriction: Full text for ScienceDirect subscribers only. Contains open access articles

    File URL: https://libkey.io/10.1016/j.ecosta.2016.05.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Blanchard, Olivier Jean & Quah, Danny, 1989. "The Dynamic Effects of Aggregate Demand and Supply Disturbances," American Economic Review, American Economic Association, vol. 79(4), pages 655-673, September.
    2. Nikolaus A. Siegfried, 2002. "An information-theoretic extension to structural VAR modelling," Quantitative Macroeconomics Working Papers 20203, Hamburg University, Department of Economics.
    3. Roberto Rigobon & Brian Sack, 2003. "Measuring The Reaction of Monetary Policy to the Stock Market," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 118(2), pages 639-669.
    4. Uhlig, Harald, 2005. "What are the effects of monetary policy on output? Results from an agnostic identification procedure," Journal of Monetary Economics, Elsevier, vol. 52(2), pages 381-419, March.
    5. Lütkepohl, Helmut & Milunovich, George, 2016. "Testing for identification in SVAR-GARCH models," Journal of Economic Dynamics and Control, Elsevier, vol. 73(C), pages 241-258.
    6. Ben S. Bernanke & Ilian Mihov, 1998. "Measuring Monetary Policy," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 113(3), pages 869-902.
    7. Faust, Jon, 1998. "The robustness of identified VAR conclusions about money," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 49(1), pages 207-244, December.
    8. Herwartz, Helmut & Lütkepohl, Helmut, 2014. "Structural vector autoregressions with Markov switching: Combining conventional with statistical identification of shocks," Journal of Econometrics, Elsevier, vol. 183(1), pages 104-116.
    9. Netsunajev, Aleksei, 2013. "Reaction to technology shocks in Markov-switching structural VARs: Identification via heteroskedasticity," Journal of Macroeconomics, Elsevier, vol. 36(C), pages 51-62.
    10. Roy van der Weide, 2002. "GO-GARCH: a multivariate generalized orthogonal GARCH model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 549-564.
    11. Markku Lanne & Helmut Lütkepohl, 2008. "Identifying Monetary Policy Shocks via Changes in Volatility," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 40(6), pages 1131-1149, September.
    12. Emanuele Bacchiocchi & Efrem Castelnuovo & Luca Fanelli, 2014. "Gimme a break! Identification and estimation of the macroeconomic effects of monetary policy shocks in the U.S," "Marco Fanno" Working Papers 0181, Dipartimento di Scienze Economiche "Marco Fanno".
    13. Lanne, Markku & Meitz, Mika & Saikkonen, Pentti, 2017. "Identification and estimation of non-Gaussian structural vector autoregressions," Journal of Econometrics, Elsevier, vol. 196(2), pages 288-304.
    14. Sentana, Enrique & Fiorentini, Gabriele, 2001. "Identification, estimation and testing of conditionally heteroskedastic factor models," Journal of Econometrics, Elsevier, vol. 102(2), pages 143-164, June.
    15. Weide, R. van der, 2002. "Generalized Orthogonal GARCH. A Multivariate GARCH model," CeNDEF Working Papers 02-02, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    16. Lütkepohl, Helmut & Velinov, Anton, 2016. "Structural Vector Autoregressions : Checking Identifying Long-Run Restrictions via Heteroskedasticity," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 30, pages 377-392.
    17. Michael Ehrmann & Marcel Fratzscher & Roberto Rigobon, 2011. "Stocks, bonds, money markets and exchange rates: measuring international financial transmission," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(6), pages 948-974, September.
    18. Rigobon, Roberto & Sack, Brian, 2004. "The impact of monetary policy on asset prices," Journal of Monetary Economics, Elsevier, vol. 51(8), pages 1553-1575, November.
    19. Emanuele Bacchiocchi & Luca Fanelli, 2015. "Identification in Structural Vector Autoregressive Models with Structural Changes, with an Application to US Monetary Policy," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 77(6), pages 761-779, December.
    20. Bjørnland, Hilde C. & Leitemo, Kai, 2009. "Identifying the interdependence between US monetary policy and the stock market," Journal of Monetary Economics, Elsevier, vol. 56(2), pages 275-282, March.
    21. Brüggemann, Ralf & Jentsch, Carsten & Trenkler, Carsten, 2016. "Inference in VARs with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 191(1), pages 69-85.
    22. Anton Velinov, 2013. "Can Stock Price Fundamentals Properly be Captured?: Using Markov Switching in Heteroskedasticity Models to Test Identification Schemes," Discussion Papers of DIW Berlin 1350, DIW Berlin, German Institute for Economic Research.
    23. Helmut Lütkepohl & Aleksei Netsunajev, 2014. "Structural Vector Autoregressions with Smooth Transition in Variances: The Interaction between U.S. Monetary Policy and the Stock Market," Discussion Papers of DIW Berlin 1388, DIW Berlin, German Institute for Economic Research.
    24. Chen, Wenjuan & Netšunajev, Aleksei, 2016. "On the long-run neutrality of demand shocks," Economics Letters, Elsevier, vol. 139(C), pages 57-60.
    25. Strohsal, Till & Weber, Enzo, 2015. "Time-varying international stock market interaction and the identification of volatility signals," Journal of Banking & Finance, Elsevier, vol. 56(C), pages 28-36.
    26. Lanne, Markku & Saikkonen, Pentti, 2007. "A Multivariate Generalized Orthogonal Factor GARCH Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 61-75, January.
    27. Helmut Lütkepohl & Aleksei NetŠunajev, 2014. "Disentangling Demand And Supply Shocks In The Crude Oil Market: How To Check Sign Restrictions In Structural Vars," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(3), pages 479-496, April.
    28. Favara, Giovanni & Giordani, Paolo, 2009. "Reconsidering the role of money for output, prices and interest rates," Journal of Monetary Economics, Elsevier, vol. 56(3), pages 419-430, April.
    29. King, Robert G. & Plosser, Charles I. & Stock, James H. & Watson, Mark W., 1991. "Stochastic Trends and Economic Fluctuations," American Economic Review, American Economic Association, vol. 81(4), pages 819-840, September.
    30. Christian Gouriéroux & Alain Monfort, 2014. "Revisiting Identification and estimation in Structural VARMA Models," Working Papers 2014-30, Center for Research in Economics and Statistics.
    31. Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-333, March.
    32. Herwartz, Helmut & Plödt, Martin, 2016. "The macroeconomic effects of oil price shocks: Evidence from a statistical identification approach," Journal of International Money and Finance, Elsevier, vol. 61(C), pages 30-44.
    33. Leandro M. Magnusson & Sophocles Mavroeidis, 2014. "Identification Using Stability Restrictions," Econometrica, Econometric Society, vol. 82(5), pages 1799-1851, September.
    34. Bouakez, Hafedh & Essid, Badye & Normandin, Michel, 2013. "Stock returns and monetary policy: Are there any ties?," Journal of Macroeconomics, Elsevier, vol. 36(C), pages 33-50.
    35. Enzo Weber, 2010. "Structural Conditional Correlation," Journal of Financial Econometrics, Oxford University Press, vol. 8(3), pages 392-407, Summer.
    36. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    37. Normandin, Michel & Phaneuf, Louis, 2004. "Monetary policy shocks:: Testing identification conditions under time-varying conditional volatility," Journal of Monetary Economics, Elsevier, vol. 51(6), pages 1217-1243, September.
    38. Roberto Rigobon, 2003. "Identification Through Heteroskedasticity," The Review of Economics and Statistics, MIT Press, vol. 85(4), pages 777-792, November.
    39. Milunovich George & Yang Minxian, 2013. "On Identifying Structural VAR Models via ARCH Effects," Journal of Time Series Econometrics, De Gruyter, vol. 5(2), pages 117-131, May.
    40. Lanne, Markku & Lütkepohl, Helmut & Maciejowska, Katarzyna, 2010. "Structural vector autoregressions with Markov switching," Journal of Economic Dynamics and Control, Elsevier, vol. 34(2), pages 121-131, February.
    41. Dmitry Kulikov & Aleksei Netsunajev, 2013. "Identifying monetary policy shocks via heteroskedasticity: a Bayesian approach," Bank of Estonia Working Papers wp2013-9, Bank of Estonia, revised 09 Dec 2013.
    42. Lanne, Markku & Lütkepohl, Helmut, 2010. "Structural Vector Autoregressions With Nonnormal Residuals," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(1), pages 159-168.
    43. Jon Faust, 1998. "The robustness of identified VAR conclusions about money," International Finance Discussion Papers 610, Board of Governors of the Federal Reserve System (U.S.).
    44. Lutz Kilian, 2009. "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market," American Economic Review, American Economic Association, vol. 99(3), pages 1053-1069, June.
    45. Canova, Fabio & Nicolo, Gianni De, 2002. "Monetary disturbances matter for business fluctuations in the G-7," Journal of Monetary Economics, Elsevier, vol. 49(6), pages 1131-1159, September.
    46. Bouakez, Hafedh & Normandin, Michel, 2010. "Fluctuations in the foreign exchange market: How important are monetary policy shocks?," Journal of International Economics, Elsevier, vol. 81(1), pages 139-153, May.
    47. Bouakez, Hafedh & Chihi, Foued & Normandin, Michel, 2014. "Measuring the effects of fiscal policy," Journal of Economic Dynamics and Control, Elsevier, vol. 47(C), pages 123-151.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karamysheva, Madina & Skrobotov, Anton, 2022. "Do we reject restrictions identifying fiscal shocks? identification based on non-Gaussian innovations," Journal of Economic Dynamics and Control, Elsevier, vol. 138(C).
    2. Ahmadi, Maryam & Manera, Matteo & Sadeghzadeh, Mehdi, 2019. "The investment-uncertainty relationship in the oil and gas industry," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    3. Lütkepohl, Helmut & Woźniak, Tomasz, 2020. "Bayesian inference for structural vector autoregressions identified by Markov-switching heteroskedasticity," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
    4. Helmut Herwartz & Alexander Lange & Simone Maxand, 2022. "Data‐driven identification in SVARs—When and how can statistical characteristics be used to unravel causal relationships?," Economic Inquiry, Western Economic Association International, vol. 60(2), pages 668-693, April.
    5. Herwartz, Helmut & Theilen, Bernd & Wang, Shu, 2024. "Unraveling the structural sources of oil production and their impact on CO2 emissions," Energy Economics, Elsevier, vol. 132(C).
    6. Robin Braun & Ralf Brüggemann, 2017. "Identification of SVAR Models by Combining Sign Restrictions With External Instruments," Working Paper Series of the Department of Economics, University of Konstanz 2017-07, Department of Economics, University of Konstanz.
    7. Helmut Lütkepohl & Aleksei Netšunajev, 2018. "The Relation between Monetary Policy and the Stock Market in Europe," Econometrics, MDPI, vol. 6(3), pages 1-14, August.
    8. repec:ags:aaea22:335529 is not listed on IDEAS

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lütkepohl, Helmut & Netšunajev, Aleksei, 2015. "Structural vector autoregressions with heteroskedasticity: A comparison of different volatility models," SFB 649 Discussion Papers 2015-015, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    2. repec:hum:wpaper:sfb649dp2015-015 is not listed on IDEAS
    3. Dominik Bertsche & Robin Braun, 2022. "Identification of Structural Vector Autoregressions by Stochastic Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 328-341, January.
    4. Helmut Lütkepohl & Anton Velinov, 2016. "Structural Vector Autoregressions: Checking Identifying Long-Run Restrictions Via Heteroskedasticity," Journal of Economic Surveys, Wiley Blackwell, vol. 30(2), pages 377-392, April.
    5. Herwartz, Helmut & Lange, Alexander & Maxand, Simone, 2019. "Statistical identification in SVARs - Monte Carlo experiments and a comparative assessment of the role of economic uncertainties for the US business cycle," University of Göttingen Working Papers in Economics 375, University of Goettingen, Department of Economics.
    6. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    7. Lütkepohl, Helmut & Netšunajev, Aleksei, 2017. "Structural vector autoregressions with smooth transition in variances," Journal of Economic Dynamics and Control, Elsevier, vol. 84(C), pages 43-57.
    8. repec:hum:wpaper:sfb649dp2014-009 is not listed on IDEAS
    9. Helmut Lütkepohl & Thore Schlaak, 2018. "Choosing Between Different Time‐Varying Volatility Models for Structural Vector Autoregressive Analysis," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 80(4), pages 715-735, August.
    10. Helmut Herwartz & Alexander Lange & Simone Maxand, 2022. "Data‐driven identification in SVARs—When and how can statistical characteristics be used to unravel causal relationships?," Economic Inquiry, Western Economic Association International, vol. 60(2), pages 668-693, April.
    11. Skrobotov, Anton (Скроботов, Антон) & Turuntseva, Marina (Турунцева, Марина), 2015. "Theoretical Aspects of Modeling of the SVAR [Теоретические Аспекты Моделирования Svar]," Published Papers mak8, Russian Presidential Academy of National Economy and Public Administration.
    12. Lütkepohl, Helmut & Netésunajev, Aleksei, 2014. "Structural vector autoregressions with smooth transition in variances: The interaction between US monetary policy and the stock market," SFB 649 Discussion Papers 2014-031, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    13. Lütkepohl, Helmut & Schlaak, Thore, 2019. "Bootstrapping impulse responses of structural vector autoregressive models identified through GARCH," Journal of Economic Dynamics and Control, Elsevier, vol. 101(C), pages 41-61.
    14. Herwartz, Helmut & Lütkepohl, Helmut, 2014. "Structural vector autoregressions with Markov switching: Combining conventional with statistical identification of shocks," Journal of Econometrics, Elsevier, vol. 183(1), pages 104-116.
    15. repec:hum:wpaper:sfb649dp2014-031 is not listed on IDEAS
    16. Herwartz, Helmut & Rohloff, Hannes & Wang, Shu, 2020. "Proxy SVAR identification of monetary policy shocks: MonteCarlo evidence and insights for the US," University of Göttingen Working Papers in Economics 404, University of Goettingen, Department of Economics.
    17. Helmut Lütkepohl & Aleksei NetŠunajev, 2014. "Disentangling Demand And Supply Shocks In The Crude Oil Market: How To Check Sign Restrictions In Structural Vars," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(3), pages 479-496, April.
    18. Helmut Lütkepohl, 2012. "Identifying Structural Vector Autoregressions via Changes in Volatility," Discussion Papers of DIW Berlin 1259, DIW Berlin, German Institute for Economic Research.
    19. Lanne, Markku & Meitz, Mika & Saikkonen, Pentti, 2017. "Identification and estimation of non-Gaussian structural vector autoregressions," Journal of Econometrics, Elsevier, vol. 196(2), pages 288-304.
    20. Herwartz, Helmut & Rohloff, Hannes & Wang, Shu, 2022. "Proxy SVAR identification of monetary policy shocks - Monte Carlo evidence and insights for the US," Journal of Economic Dynamics and Control, Elsevier, vol. 139(C).
    21. Dmitry Kulikov & Aleksei Netsunajev, 2016. "Identifying Shocks in Structural VAR models via heteroskedasticity: a Bayesian approach," Bank of Estonia Working Papers wp2015-8, Bank of Estonia, revised 19 Feb 2016.
    22. Stefan Bruder, 2018. "Inference for structural impulse responses in SVAR-GARCH models," ECON - Working Papers 281, Department of Economics - University of Zurich.
    23. Herwartz, Helmut & Roestel, Jan, 2022. "Asset prices, financial amplification and monetary policy: Structural evidence from an identified multivariate GARCH model," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 78(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecosta:v:1:y:2017:i:c:p:2-18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/econometrics-and-statistics .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.