IDEAS home Printed from https://ideas.repec.org/p/cpr/ceprdp/16346.html
   My bibliography  Save this paper

Using Time-Varying Volatility for Identification in Vector Autoregressions: An Application to Endogenous Uncertainty

Author

Listed:
  • Marcellino, Massimiliano
  • Carriero, Andrea
  • Clark, Todd

Abstract

We develop a structural vector autoregression with stochastic volatility in which one of the variables can impact both the mean and the variance of the other variables. We provide conditional posterior distributions for this model, develop an MCMC algorithm for estimation, and show how stochastic volatility can be used to provide useful restrictions for the identification of structural shocks. We then use the model with US data to show that some variables have a significant contemporaneous feedback effect on macroeconomic uncertainty, and overlooking this channel can lead to distortions in the estimated effects of uncertainty on the economy.

Suggested Citation

  • Marcellino, Massimiliano & Carriero, Andrea & Clark, Todd, 2021. "Using Time-Varying Volatility for Identification in Vector Autoregressions: An Application to Endogenous Uncertainty," CEPR Discussion Papers 16346, C.E.P.R. Discussion Papers.
  • Handle: RePEc:cpr:ceprdp:16346
    as

    Download full text from publisher

    File URL: https://cepr.org/publications/DP16346
    Download Restriction: CEPR Discussion Papers are free to download for our researchers, subscribers and members. If you fall into one of these categories but have trouble downloading our papers, please contact us at subscribers@cepr.org
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. N. Bloom, 2016. "Fluctuations in uncertainty," Voprosy Ekonomiki, NP Voprosy Ekonomiki, issue 4.
    2. Diebold, Francis X. & Schorfheide, Frank & Shin, Minchul, 2017. "Real-time forecast evaluation of DSGE models with stochastic volatility," Journal of Econometrics, Elsevier, vol. 201(2), pages 322-332.
    3. John Geweke, 2004. "Getting It Right: Joint Distribution Tests of Posterior Simulators," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 799-804, January.
    4. Markku Lanne & Helmut Lütkepohl, 2008. "Identifying Monetary Policy Shocks via Changes in Volatility," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 40(6), pages 1131-1149, September.
    5. Dominik Bertsche & Robin Braun, 2022. "Identification of Structural Vector Autoregressions by Stochastic Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 328-341, January.
    6. Susanto Basu & Brent Bundick, 2017. "Uncertainty Shocks in a Model of Effective Demand," Econometrica, Econometric Society, vol. 85, pages 937-958, May.
    7. Chiu, Ching-Wai (Jeremy) & Mumtaz, Haroon & Pintér, Gábor, 2017. "Forecasting with VAR models: Fat tails and stochastic volatility," International Journal of Forecasting, Elsevier, vol. 33(4), pages 1124-1143.
    8. Michael W. McCracken & Serena Ng, 2016. "FRED-MD: A Monthly Database for Macroeconomic Research," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 574-589, October.
    9. Nicholas Bloom & Max Floetotto & Nir Jaimovich & Itay Saporta†Eksten & Stephen J. Terry, 2018. "Really Uncertain Business Cycles," Econometrica, Econometric Society, vol. 86(3), pages 1031-1065, May.
    10. Jesus Fernandez-Villaverde & Pablo Guerron-Quintana & Juan F. Rubio-Ramirez & Martin Uribe, 2011. "Risk Matters: The Real Effects of Volatility Shocks," American Economic Review, American Economic Association, vol. 101(6), pages 2530-2561, October.
    11. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2016. "Common Drifting Volatility in Large Bayesian VARs," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(3), pages 375-390, July.
    12. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2018. "Measuring Uncertainty and Its Impact on the Economy," The Review of Economics and Statistics, MIT Press, vol. 100(5), pages 799-815, December.
    13. Caldara, Dario & Fuentes-Albero, Cristina & Gilchrist, Simon & Zakrajšek, Egon, 2016. "The macroeconomic impact of financial and uncertainty shocks," European Economic Review, Elsevier, vol. 88(C), pages 185-207.
    14. Cristina Arellano & Yan Bai & Patrick J. Kehoe, 2019. "Financial Frictions and Fluctuations in Volatility," Journal of Political Economy, University of Chicago Press, vol. 127(5), pages 2049-2103.
    15. Kyle Jurado & Sydney C. Ludvigson & Serena Ng, 2015. "Measuring Uncertainty," American Economic Review, American Economic Association, vol. 105(3), pages 1177-1216, March.
    16. Giovanni Angelini & Emanuele Bacchiocchi & Giovanni Caggiano & Luca Fanelli, 2019. "Uncertainty across volatility regimes," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(3), pages 437-455, April.
    17. Caggiano, Giovanni & Castelnuovo, Efrem & Groshenny, Nicolas, 2014. "Uncertainty shocks and unemployment dynamics in U.S. recessions," Journal of Monetary Economics, Elsevier, vol. 67(C), pages 78-92.
    18. Soojin Jo & Rodrigo Sekkel, 2019. "Macroeconomic Uncertainty Through the Lens of Professional Forecasters," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(3), pages 436-446, July.
    19. Nicholas Bloom, 2009. "The Impact of Uncertainty Shocks," Econometrica, Econometric Society, vol. 77(3), pages 623-685, May.
    20. Alejandro Justiniano & Giorgio E. Primiceri, 2008. "The Time-Varying Volatility of Macroeconomic Fluctuations," American Economic Review, American Economic Association, vol. 98(3), pages 604-641, June.
    21. Gary Koop & Simon M. Potter, 2007. "Estimation and Forecasting in Models with Multiple Breaks," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 74(3), pages 763-789.
    22. Mark Bognanni, 2018. "A Class of Time-Varying Parameter Structural VARs for Inference under Exact or Set Identification," Working Papers (Old Series) 1811, Federal Reserve Bank of Cleveland.
    23. Leandro M. Magnusson & Sophocles Mavroeidis, 2014. "Identification Using Stability Restrictions," Econometrica, Econometric Society, vol. 82(5), pages 1799-1851, September.
    24. Normandin, Michel & Phaneuf, Louis, 2004. "Monetary policy shocks:: Testing identification conditions under time-varying conditional volatility," Journal of Monetary Economics, Elsevier, vol. 51(6), pages 1217-1243, September.
    25. Barbara Rossi & Tatevik Sekhposyan, 2015. "Macroeconomic Uncertainty Indices Based on Nowcast and Forecast Error Distributions," American Economic Review, American Economic Association, vol. 105(5), pages 650-655, May.
    26. Minchul Shin & Molin Zhong, 2020. "A New Approach to Identifying the Real Effects of Uncertainty Shocks," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 367-379, April.
    27. Lanne, Markku & Lütkepohl, Helmut & Maciejowska, Katarzyna, 2010. "Structural vector autoregressions with Markov switching," Journal of Economic Dynamics and Control, Elsevier, vol. 34(2), pages 121-131, February.
    28. Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016. "Measuring Economic Policy Uncertainty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
    29. Antonello D'Agostino & Luca Gambetti & Domenico Giannone, 2013. "Macroeconomic forecasting and structural change," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(1), pages 82-101, January.
    30. Lanne, Markku & Lütkepohl, Helmut, 2010. "Structural Vector Autoregressions With Nonnormal Residuals," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(1), pages 159-168.
    31. Ben S. Bernanke, 1983. "Irreversibility, Uncertainty, and Cyclical Investment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 98(1), pages 85-106.
    32. Drew D. Creal & Jing Cynthia Wu, 2017. "Monetary Policy Uncertainty And Economic Fluctuations," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 58(4), pages 1317-1354, November.
    33. Lanne, Markku & Meitz, Mika & Saikkonen, Pentti, 2017. "Identification and estimation of non-Gaussian structural vector autoregressions," Journal of Econometrics, Elsevier, vol. 196(2), pages 288-304.
    34. Carriero, Andrea & Clark, Todd E. & Marcellino, Massimiliano, 2019. "Large Bayesian vector autoregressions with stochastic volatility and non-conjugate priors," Journal of Econometrics, Elsevier, vol. 212(1), pages 137-154.
    35. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2020. "Assessing international commonality in macroeconomic uncertainty and its effects," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(3), pages 273-293, April.
    36. R?diger Bachmann & Steffen Elstner & Eric R. Sims, 2013. "Uncertainty and Economic Activity: Evidence from Business Survey Data," American Economic Journal: Macroeconomics, American Economic Association, vol. 5(2), pages 217-249, April.
    37. Frank Smets & Rafael Wouters, 2007. "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach," American Economic Review, American Economic Association, vol. 97(3), pages 586-606, June.
    38. Sentana, Enrique & Fiorentini, Gabriele, 2001. "Identification, estimation and testing of conditionally heteroskedastic factor models," Journal of Econometrics, Elsevier, vol. 102(2), pages 143-164, June.
    39. Daniel J Lewis, 2021. "Identifying Shocks via Time-Varying Volatility [First Order Autoregressive Processes and Strong Mixing]," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 88(6), pages 3086-3124.
    40. Kilian,Lutz & Lütkepohl,Helmut, 2018. "Structural Vector Autoregressive Analysis," Cambridge Books, Cambridge University Press, number 9781107196575, September.
    41. Todd E. Clark, 2011. "Real-Time Density Forecasts From Bayesian Vector Autoregressions With Stochastic Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(3), pages 327-341, July.
    42. Joshua C. C. Chan & Eric Eisenstat, 2018. "Bayesian model comparison for time‐varying parameter VARs with stochastic volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(4), pages 509-532, June.
    43. Lütkepohl, Helmut & Netšunajev, Aleksei, 2017. "Structural vector autoregressions with smooth transition in variances," Journal of Economic Dynamics and Control, Elsevier, vol. 84(C), pages 43-57.
    44. Todd E. Clark & Francesco Ravazzolo, 2015. "Macroeconomic Forecasting Performance under Alternative Specifications of Time‐Varying Volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(4), pages 551-575, June.
    45. Robert McDonald & Daniel Siegel, 1986. "The Value of Waiting to Invest," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 101(4), pages 707-727.
    46. Leduc, Sylvain & Liu, Zheng, 2016. "Uncertainty shocks are aggregate demand shocks," Journal of Monetary Economics, Elsevier, vol. 82(C), pages 20-35.
    47. Ruediger Bachmann & Giuseppe Moscarini, 2011. "Business Cycles and Endogenous Uncertainty," 2011 Meeting Papers 36, Society for Economic Dynamics.
    48. Jacquier, Eric & Polson, Nicholas G. & Rossi, P.E.Peter E., 2004. "Bayesian analysis of stochastic volatility models with fat-tails and correlated errors," Journal of Econometrics, Elsevier, vol. 122(1), pages 185-212, September.
    49. Giorgio E. Primiceri, 2005. "Time Varying Structural Vector Autoregressions and Monetary Policy," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 821-852.
    50. Roberto Rigobon, 2003. "Identification Through Heteroskedasticity," The Review of Economics and Statistics, MIT Press, vol. 85(4), pages 777-792, November.
    51. David Berger & Ian Dew-Becker & Stefano Giglio, 2020. "Uncertainty Shocks as Second-Moment News Shocks," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 87(1), pages 40-76.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chang, Hao-Wen & Chang, Tsangyao & Lee, Chien-Chiang, 2023. "Return and volatility connectedness among the BRICS stock and oil markets," Resources Policy, Elsevier, vol. 86(PA).
    2. Bacchiocchi, Emanuele & Dragomirescu-Gaina, Catalin, 2024. "Uncertainty spill-overs: When policy and financial realms overlap," Journal of International Money and Finance, Elsevier, vol. 143(C).
    3. Olli Palm'en, 2022. "Macroeconomic Effect of Uncertainty and Financial Shocks: a non-Gaussian VAR approach," Papers 2202.10834, arXiv.org.
    4. Gnangnon, Sèna Kimm, 2023. "Effect of Economic Uncertainty on Remittances Flows from Developed Countries," EconStor Preprints 279480, ZBW - Leibniz Information Centre for Economics.
    5. Che, Ming & Zhu, Zixiang & Li, Yujia, 2023. "Geopolitical risk and economic policy uncertainty: Different roles in China's financial cycle," International Review of Financial Analysis, Elsevier, vol. 90(C).
    6. Alina Bobasu & Lucia Quaglietti & Martino Ricci, 2024. "Tracking Global Economic Uncertainty: Implications for the Euro Area," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 72(2), pages 820-857, June.
    7. Andrea Carriero & Alessio Volpicella, 2022. "Generalizing the Max Share Identification to multiple shocks identification: an Application to Uncertainty," School of Economics Discussion Papers 0322, School of Economics, University of Surrey.
    8. Carriero, Andrea & Marcellino, Massimiliano & Tornese, Tommaso, 2023. "Macro uncertainty in the long run," Economics Letters, Elsevier, vol. 225(C).
    9. Karlsson, Sune & Mazur, Stepan & Nguyen, Hoang, 2023. "Vector autoregression models with skewness and heavy tails," Journal of Economic Dynamics and Control, Elsevier, vol. 146(C).
    10. repec:zbw:bofrdp:2022_005 is not listed on IDEAS
    11. Ambrocio, Gene, 2020. "Inflationary household uncertainty shocks," Research Discussion Papers 5/2020, Bank of Finland.
    12. Ambrocio, Gene, 2020. "Inflationary household uncertainty shocks," Bank of Finland Research Discussion Papers 5/2020, Bank of Finland.
    13. Beckmann, Joscha & Czudaj, Robert L., 2024. "Uncertainty Shocks and Inflation: The Role of Credibility and Expectation Anchoring," MPRA Paper 119971, University Library of Munich, Germany.
    14. Yujia, Li & Zixiang, Zhu & Ming, Che, 2024. "Exploring the relationship between China's economic policy uncertainty and business cycles: Exogenous impulse or endogenous responses?," Emerging Markets Review, Elsevier, vol. 58(C).
    15. Koivisto, Tero, 2024. "Asset price shocks and inflation in the Finnish economy," BoF Economics Review 6/2024, Bank of Finland.
    16. Dibiasi, Andreas & Sarferaz, Samad, 2023. "Measuring macroeconomic uncertainty: A cross-country analysis," European Economic Review, Elsevier, vol. 153(C).
    17. Sèna Kimm Gnangnon, 2024. "The effect of economic uncertainty on remittance flows from developed countries," Economic Affairs, Wiley Blackwell, vol. 44(2), pages 267-280, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea Carriero & Alessio Volpicella, 2022. "Generalizing the Max Share Identification to multiple shocks identification: an Application to Uncertainty," School of Economics Discussion Papers 0322, School of Economics, University of Surrey.
    2. Awijen, Haithem & Ben Zaied, Younes & Nguyen, Duc Khuong & Sensoy, Ahmet, 2020. "Endogenous Financial Uncertainty and Macroeconomic Volatility: Evidence from the United States," MPRA Paper 101276, University Library of Munich, Germany, revised Jun 2020.
    3. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
    4. Josué Diwambuena & Jean-Paul K. Tsasa, 2021. "The Real Effects of Uncertainty Shocks: New Evidence from Linear and Nonlinear SVAR Models," BEMPS - Bozen Economics & Management Paper Series BEMPS87, Faculty of Economics and Management at the Free University of Bozen.
    5. Dario Caldara & Chiara Scotti & Molin Zhong, 2021. "Macroeconomic and Financial Risks: A Tale of Mean and Volatility," International Finance Discussion Papers 1326, Board of Governors of the Federal Reserve System (U.S.).
    6. Reif Magnus, 2021. "Macroeconomic uncertainty and forecasting macroeconomic aggregates," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 25(2), pages 1-20, April.
    7. Fabio Bertolotti & Massimiliano Marcellino, 2019. "Tax shocks with high and low uncertainty," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(6), pages 972-993, September.
    8. Fritsche, Jan Philipp & Klein, Mathias & Rieth, Malte, 2021. "Government spending multipliers in (un)certain times," Journal of Public Economics, Elsevier, vol. 203(C).
    9. Jesus Fernandez-Villaverde & Pablo Guerron-Quintana, 2020. "Uncertainty Shocks and Business Cycle Research," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 37, pages 118-166, August.
    10. Gupta, Rangan & Ma, Jun & Risse, Marian & Wohar, Mark E., 2018. "Common business cycles and volatilities in US states and MSAs: The role of economic uncertainty," Journal of Macroeconomics, Elsevier, vol. 57(C), pages 317-337.
    11. Rangan Gupta & Chi Keung Marco Lau & Mark E. Wohar, 2019. "The impact of US uncertainty on the Euro area in good and bad times: evidence from a quantile structural vector autoregressive model," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 46(2), pages 353-368, May.
    12. Qazi Haque & Leandro M. Magnusson & Kazuki Tomioka, 2021. "Empirical Evidence on the Dynamics of Investment Under Uncertainty in the U.S," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(5), pages 1193-1217, October.
    13. Tosapol Apaitan & Pongsak Luangaram & Pym Manopimoke, 2022. "Uncertainty in an emerging market economy: evidence from Thailand," Empirical Economics, Springer, vol. 62(3), pages 933-989, March.
    14. Boyan Jovanovic & Sai Ma, 2022. "Uncertainty and Growth Disasters," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 44, pages 33-64, April.
    15. repec:zbw:bofrdp:2022_005 is not listed on IDEAS
    16. Dibiasi, Andreas & Sarferaz, Samad, 2023. "Measuring macroeconomic uncertainty: A cross-country analysis," European Economic Review, Elsevier, vol. 153(C).
    17. Ambrocio, Gene, 2020. "Inflationary household uncertainty shocks," Bank of Finland Research Discussion Papers 5/2020, Bank of Finland.
    18. Dominik Bertsche & Robin Braun, 2022. "Identification of Structural Vector Autoregressions by Stochastic Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 328-341, January.
    19. Ding, Yibing & Liu, Ziyu & Liu, Dayu, 2022. "Structural news shock, financial market uncertainty and China's business fluctuations," Pacific-Basin Finance Journal, Elsevier, vol. 76(C).
    20. Mirela Miescu, 2019. "Uncertainty shocks in emerging economies," Working Papers 277077821, Lancaster University Management School, Economics Department.
    21. Karaki, Mohamad B. & Rangaraju, Sandeep Kumar, 2023. "The confidence channel of U.S. financial uncertainty: Evidence from industry-level data," Economic Modelling, Elsevier, vol. 129(C).

    More about this item

    Keywords

    Endogeneity; Causality; stochastic volatility; Bayesian methods;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cpr:ceprdp:16346. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://www.cepr.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.