IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2405.04973.html
   My bibliography  Save this paper

SVARs with breaks: Identification and inference

Author

Listed:
  • Emanuele Bacchiocchi
  • Toru Kitagawa

Abstract

In this paper we propose a class of structural vector autoregressions (SVARs) characterized by structural breaks (SVAR-WB). Together with standard restrictions on the parameters and on functions of them, we also consider constraints across the different regimes. Such constraints can be either (a) in the form of stability restrictions, indicating that not all the parameters or impulse responses are subject to structural changes, or (b) in terms of inequalities regarding particular characteristics of the SVAR-WB across the regimes. We show that all these kinds of restrictions provide benefits in terms of identification. We derive conditions for point and set identification of the structural parameters of the SVAR-WB, mixing equality, sign, rank and stability restrictions, as well as constraints on forecast error variances (FEVs). As point identification, when achieved, holds locally but not globally, there will be a set of isolated structural parameters that are observationally equivalent in the parametric space. In this respect, both common frequentist and Bayesian approaches produce unreliable inference as the former focuses on just one of these observationally equivalent points, while for the latter on a non-vanishing sensitivity to the prior. To overcome these issues, we propose alternative approaches for estimation and inference that account for all admissible observationally equivalent structural parameters. Moreover, we develop a pure Bayesian and a robust Bayesian approach for doing inference in set-identified SVAR-WBs. Both the theory of identification and inference are illustrated through a set of examples and an empirical application on the transmission of US monetary policy over the great inflation and great moderation regimes.

Suggested Citation

  • Emanuele Bacchiocchi & Toru Kitagawa, 2024. "SVARs with breaks: Identification and inference," Papers 2405.04973, arXiv.org.
  • Handle: RePEc:arx:papers:2405.04973
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2405.04973
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Benjamin K. Johannsen & Elmar Mertens, 2021. "A Time‐Series Model of Interest Rates with the Effective Lower Bound," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 53(5), pages 1005-1046, August.
    2. Christiano, Lawrence J & Eichenbaum, Martin & Evans, Charles, 1996. "The Effects of Monetary Policy Shocks: Evidence from the Flow of Funds," The Review of Economics and Statistics, MIT Press, vol. 78(1), pages 16-34, February.
    3. Gabriel Perez-Quiros & Margaret M. McConnell, 2000. "Output Fluctuations in the United States: What Has Changed since the Early 1980's?," American Economic Review, American Economic Association, vol. 90(5), pages 1464-1476, December.
    4. Hooper, Peter & Mishkin, Frederic S. & Sufi, Amir, 2020. "Prospects for inflation in a high pressure economy: Is the Phillips curve dead or is it just hibernating?," Research in Economics, Elsevier, vol. 74(1), pages 26-62.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oleg Korenok & Stanislav Radchenko, 2004. "Monetary Policy Effect on the Business Cycle Fluctuations: Output vs. Index Measures of the Cycle," Macroeconomics 0409015, University Library of Munich, Germany, revised 20 Sep 2004.
    2. Firmin Doko Tchatoka & Qazi Haque, 2024. "Revisiting the Macroeconomic Effects of Monetary Policy Shocks," The Economic Record, The Economic Society of Australia, vol. 100(329), pages 234-259, June.
    3. Faust, Jon & Swanson, Eric T. & Wright, Jonathan H., 2004. "Identifying VARS based on high frequency futures data," Journal of Monetary Economics, Elsevier, vol. 51(6), pages 1107-1131, September.
    4. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino & Elmar Mertens, 2024. "Addressing COVID-19 Outliers in BVARs with Stochastic Volatility," The Review of Economics and Statistics, MIT Press, vol. 106(5), pages 1403-1417, September.
    5. Champagne, Julien & Sekkel, Rodrigo, 2018. "Changes in monetary regimes and the identification of monetary policy shocks: Narrative evidence from Canada," Journal of Monetary Economics, Elsevier, vol. 99(C), pages 72-87.
    6. Necati Tekatli, 2007. "Understanding Sources of the Change in International Business Cycles," UFAE and IAE Working Papers 731.08, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
    7. Hanson, Michael S., 2006. "Varying monetary policy regimes: A vector autoregressive investigation," Journal of Economics and Business, Elsevier, vol. 58(5-6), pages 407-427.
    8. Todd E. Clark, 2009. "Is the Great Moderation over? an empirical analysis," Economic Review, Federal Reserve Bank of Kansas City, vol. 94(Q IV), pages 5-42.
    9. Agnello, Luca & Castro, Vítor & Sousa, Ricardo M., 2022. "On the international co-movement of natural interest rates," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 80(C).
    10. Martínez-García, Enrique, 2021. "Get the lowdown: The international side of the fall in the U.S. natural rate of interest," Economic Modelling, Elsevier, vol. 100(C).
    11. Altavilla, Carlo & Ciccarelli, Matteo, 2010. "Evaluating the effect of monetary policy on unemployment with alternative inflation forecasts," Economic Modelling, Elsevier, vol. 27(1), pages 237-253, January.
    12. Douglas Sutherland & Peter Hoeller & Balázs Égert & Oliver Röhn, 2010. "Counter-cyclical Economic Policy," OECD Economics Department Working Papers 760, OECD Publishing.
    13. Evans, Charles L. & Marshall, David A., 2007. "Economic determinants of the nominal treasury yield curve," Journal of Monetary Economics, Elsevier, vol. 54(7), pages 1986-2003, October.
    14. Alban Moura, 2023. "Trend breaks and the long-run implications of investment-specific technological progress," Applied Economics Letters, Taylor & Francis Journals, vol. 30(16), pages 2270-2275, September.
    15. van Dijk, Dick & Hans Franses, Philip & Peter Boswijk, H., 2007. "Absorption of shocks in nonlinear autoregressive models," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4206-4226, May.
    16. Rui Manuel Pereira, Alfredo Marvao Pereira and William J. Hausman, 2017. "Railroad Infrastructure Investments and Economic Development in the Antebellum United States," Journal of Economic Development, Chung-Ang Unviersity, Department of Economics, vol. 42(3), pages 1-16, September.
    17. Pablo Burriel & Jesús Fernández-Villaverde & Juan Rubio-Ramírez, 2010. "MEDEA: a DSGE model for the Spanish economy," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 1(1), pages 175-243, March.
    18. Wen Xu, 2016. "Estimation of Dynamic Panel Data Models with Stochastic Volatility Using Particle Filters," Econometrics, MDPI, vol. 4(4), pages 1-13, October.
    19. Ayse Kabukcuoglu & Enrique Martínez-García, 2016. "What Helps Forecast U.S. Inflation?—Mind the Gap!," Koç University-TUSIAD Economic Research Forum Working Papers 1615, Koc University-TUSIAD Economic Research Forum.
    20. Yang Liu & Mariano Croce & Ivan Shaliastovich & Ric Colacito, 2016. "Volatility Risk Pass-Through," 2016 Meeting Papers 135, Society for Economic Dynamics.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2405.04973. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.