IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2403.06879.html
   My bibliography  Save this paper

Partially identified heteroskedastic SVARs

Author

Listed:
  • Emanuele Bacchiocchi
  • Andrea Bastianin
  • Toru Kitagawa
  • Elisabetta Mirto

Abstract

This paper studies the identification of Structural Vector Autoregressions (SVARs) exploiting a break in the variances of the structural shocks. Point-identification for this class of models relies on an eigen-decomposition involving the covariance matrices of reduced-form errors and requires that all the eigenvalues are distinct. This point-identification, however, fails in the presence of multiplicity of eigenvalues. This occurs in an empirically relevant scenario where, for instance, only a subset of structural shocks had the break in their variances, or where a group of variables shows a variance shift of the same amount. Together with zero or sign restrictions on the structural parameters and impulse responses, we derive the identified sets for impulse responses and show how to compute them. We perform inference on the impulse response functions, building on the robust Bayesian approach developed for set identified SVARs. To illustrate our proposal, we present an empirical example based on the literature on the global crude oil market where the identification is expected to fail due to multiplicity of eigenvalues.

Suggested Citation

  • Emanuele Bacchiocchi & Andrea Bastianin & Toru Kitagawa & Elisabetta Mirto, 2024. "Partially identified heteroskedastic SVARs," Papers 2403.06879, arXiv.org, revised Mar 2024.
  • Handle: RePEc:arx:papers:2403.06879
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2403.06879
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Arthur Lewbel, 2012. "Using Heteroscedasticity to Identify and Estimate Mismeasured and Endogenous Regressor Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(1), pages 67-80.
    2. Uhlig, Harald, 2005. "What are the effects of monetary policy on output? Results from an agnostic identification procedure," Journal of Monetary Economics, Elsevier, vol. 52(2), pages 381-419, March.
    3. Juan F. Rubio-Ramírez & Daniel F. Waggoner & Tao Zha, 2010. "Structural Vector Autoregressions: Theory of Identification and Algorithms for Inference," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 77(2), pages 665-696.
    4. Emanuele Bacchiocchi & Luca Fanelli, 2015. "Identification in Structural Vector Autoregressive Models with Structural Changes, with an Application to US Monetary Policy," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 77(6), pages 761-779, December.
    5. Kilian,Lutz & Lütkepohl,Helmut, 2018. "Structural Vector Autoregressive Analysis," Cambridge Books, Cambridge University Press, number 9781107196575, November.
    6. Helmut Lütkepohl & Mika Meitz & Aleksei Netšunajev & Pentti Saikkonen, 2021. "Testing identification via heteroskedasticity in structural vector autoregressive models," The Econometrics Journal, Royal Economic Society, vol. 24(1), pages 1-22.
    7. Lutz Kilian & Daniel P. Murphy, 2012. "Why Agnostic Sign Restrictions Are Not Enough: Understanding The Dynamics Of Oil Market Var Models," Journal of the European Economic Association, European Economic Association, vol. 10(5), pages 1166-1188, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David S. Jacks & Martin Stuermer, 2021. "Dry bulk shipping and the evolution of maritime transport costs, 1850–2020," Australian Economic History Review, Economic History Society of Australia and New Zealand, vol. 61(2), pages 204-227, July.
    2. Robin Braun & Ralf Brüggemann, 2017. "Identification of SVAR Models by Combining Sign Restrictions With External Instruments," Working Paper Series of the Department of Economics, University of Konstanz 2017-07, Department of Economics, University of Konstanz.
    3. Atsushi Inoue & Lutz Kilian, 2020. "The Role of the Prior in Estimating VAR Models with Sign Restrictions," Working Papers 2030, Federal Reserve Bank of Dallas.
    4. Inoue, Atsushi & Kilian, Lutz, 2022. "Joint Bayesian inference about impulse responses in VAR models," Journal of Econometrics, Elsevier, vol. 231(2), pages 457-476.
    5. Kilian, Lutz, 2022. "Facts and fiction in oil market modeling," Energy Economics, Elsevier, vol. 110(C).
    6. Dominik Bertsche, 2019. "The effects of oil supply shocks on the macroeconomy: a Proxy-FAVAR approachThe effects of oil supply shocks on the macroeconomy: a Proxy-FAVAR approach," Working Paper Series of the Department of Economics, University of Konstanz 2019-06, Department of Economics, University of Konstanz.
    7. Harrison, Andre & Reed, Robert R., 2023. "Gross capital inflows, the U.S. economy, and the response of the Federal Reserve," Journal of International Money and Finance, Elsevier, vol. 139(C).
    8. Herwartz, Helmut & Rohloff, Hannes & Wang, Shu, 2022. "Proxy SVAR identification of monetary policy shocks - Monte Carlo evidence and insights for the US," Journal of Economic Dynamics and Control, Elsevier, vol. 139(C).
    9. Saidul Islam, 2024. "Investment-specific technology shocks and business cycle: evidence from a sign restriction approach," Indian Economic Review, Springer, vol. 59(1), pages 249-283, June.
    10. Nadav Ben Zeev, 2019. "Is There A Single Shock That Drives The Majority Of Business Cycle Fluctuations?," Working Papers 1906, Ben-Gurion University of the Negev, Department of Economics.
    11. Francesco Simone Lucidi, 2023. "The misalignment of fiscal multipliers in Italian regions," Regional Studies, Taylor & Francis Journals, vol. 57(10), pages 2073-2086, October.
    12. Carrillo-Maldonado, Paul & Díaz-Cassou, Javier, 2023. "An anatomy of external shocks in the Andean region," The Journal of Economic Asymmetries, Elsevier, vol. 27(C).
    13. Matthew Read, 2022. "The Unit-effect Normalisation in Set-identified Structural Vector Autoregressions," RBA Research Discussion Papers rdp2022-04, Reserve Bank of Australia.
    14. Mikkel Plagborg‐Møller & Christian K. Wolf, 2021. "Local Projections and VARs Estimate the Same Impulse Responses," Econometrica, Econometric Society, vol. 89(2), pages 955-980, March.
    15. Antolín-Díaz, Juan & Petrella, Ivan & Rubio-Ramírez, Juan F., 2021. "Structural scenario analysis with SVARs," Journal of Monetary Economics, Elsevier, vol. 117(C), pages 798-815.
    16. Martin Bruns & Michele Piffer, 2018. "Bayesian Structural VAR models: a new approach for prior beliefs on impulse responses," Working Papers 878, Queen Mary University of London, School of Economics and Finance.
    17. Thomas S. Gundersen, 2020. "The Impact of U.S. Supply Shocks on the Global Oil Price," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    18. Matthew Read, 2022. "Algorithms for inference in SVARs identified with sign and zero restrictions [Identification and inference with ranking restrictions]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 699-718.
    19. Britta Gehrke & Fang Yao, 2016. "Persistence and volatility of real exchange rates: the role of supply shocks revisited," Reserve Bank of New Zealand Discussion Paper Series DP2016/02, Reserve Bank of New Zealand.
    20. Montiel Olea, José Luis & Nesbit, James, 2021. "(Machine) learning parameter regions," Journal of Econometrics, Elsevier, vol. 222(1), pages 716-744.

    More about this item

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2403.06879. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.