IDEAS home Printed from https://ideas.repec.org/r/eee/rensus/v12y2008i1p1-38.html
   My bibliography  Save this item

Technological development in the Stirling cycle engines

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Carlos Ulloa & Jacobo Porteiro & Pablo Eguía & José M. Pousada-Carballo, 2013. "Application Model for a Stirling Engine Micro-Generation System in Caravans in Different European Locations," Energies, MDPI, vol. 6(2), pages 1-16, February.
  2. Bert, Juliette & Chrenko, Daniela & Sophy, Tonino & Le Moyne, Luis & Sirot, Frédéric, 2012. "Zero dimensional finite-time thermodynamic, three zones numerical model of a generic Stirling and its experimental validation," Renewable Energy, Elsevier, vol. 47(C), pages 167-174.
  3. Szczygieł, Ireneusz & Stanek, Wojciech & Szargut, Jan, 2016. "Application of the Stirling engine driven with cryogenic exergy of LNG (liquefied natural gas) for the production of electricity," Energy, Elsevier, vol. 105(C), pages 25-31.
  4. Iora, P. & Silva, P., 2013. "Innovative combined heat and power system based on a double shaft intercooled externally fired gas cycle," Applied Energy, Elsevier, vol. 105(C), pages 108-115.
  5. Jacek Kropiwnicki & Mariusz Furmanek, 2020. "A Theoretical and Experimental Study of Moderate Temperature Alfa Type Stirling Engines," Energies, MDPI, vol. 13(7), pages 1-21, April.
  6. Puech, Pascal & Tishkova, Victoria, 2011. "Thermodynamic analysis of a Stirling engine including regenerator dead volume," Renewable Energy, Elsevier, vol. 36(2), pages 872-878.
  7. Slavin, V.S. & Bakos, G.C. & Finnikov, K.A., 2009. "Conversion of thermal energy into electricity via a water pump operating in Stirling engine cycle," Applied Energy, Elsevier, vol. 86(7-8), pages 1162-1169, July.
  8. Mascuch, Jakub & Novotny, Vaclav & Spale, Jan & Vodicka, Vaclav & Zeleny, Zbynek, 2021. "Experience from set-up and pilot operation of an in-house developed biomass-fired ORC microcogeneration unit," Renewable Energy, Elsevier, vol. 165(P1), pages 251-260.
  9. Pablo Jimenez Zabalaga & Evelyn Cardozo & Luis A. Choque Campero & Joseph Adhemar Araoz Ramos, 2020. "Performance Analysis of a Stirling Engine Hybrid Power System," Energies, MDPI, vol. 13(4), pages 1-38, February.
  10. Tavakolpour-Saleh, A.R. & Jokar, H., 2016. "Neural network-based control of an intelligent solar Stirling pump," Energy, Elsevier, vol. 94(C), pages 508-523.
  11. Chin-Hsiang Cheng & Jhen-Syuan Huang, 2020. "Development of a Beta-Type Moderate-Temperature-Differential Stirling Engine Based on Computational and Experimental Methods," Energies, MDPI, vol. 13(22), pages 1-14, November.
  12. Ziviani, Davide & Beyene, Asfaw & Venturini, Mauro, 2014. "Advances and challenges in ORC systems modeling for low grade thermal energy recovery," Applied Energy, Elsevier, vol. 121(C), pages 79-95.
  13. Stefania Guarino & Alessandro Buscemi & Antonio Messineo & Valerio Lo Brano, 2022. "Energy and Environmental Assessment of a Hybrid Dish-Stirling Concentrating Solar Power Plant," Sustainability, MDPI, vol. 14(10), pages 1-20, May.
  14. Cheng, Chin-Hsiang & Yang, Hang-Suin & Jhou, Bing-Yi & Chen, Yi-Cheng & Wang, Yu-Jen, 2013. "Dynamic simulation of thermal-lag Stirling engines," Applied Energy, Elsevier, vol. 108(C), pages 466-476.
  15. Parlak, Nezaket & Wagner, Andreas & Elsner, Michael & Soyhan, Hakan S., 2009. "Thermodynamic analysis of a gamma type Stirling engine in non-ideal adiabatic conditions," Renewable Energy, Elsevier, vol. 34(1), pages 266-273.
  16. Zhao, Tingting & Jiang, Weitao & Niu, Dong & Liu, Hongzhong & Chen, Bangdao & Shi, Yongsheng & Yin, Lei & Lu, Bingheng, 2017. "Flexible pyroelectric device for scavenging thermal energy from chemical process and as self-powered temperature monitor," Applied Energy, Elsevier, vol. 195(C), pages 754-760.
  17. Catapano, F. & Frazzica, A. & Freni, A. & Manzan, M. & Micheli, D. & Palomba, V. & Sementa, P. & Vaglieco, B.M., 2022. "Development and experimental testing of an integrated prototype based on Stirling, ORC and a latent thermal energy storage system for waste heat recovery in naval application," Applied Energy, Elsevier, vol. 311(C).
  18. McKinley, Ian M. & Lee, Felix Y. & Pilon, Laurent, 2014. "A novel thermomechanical energy conversion cycle," Applied Energy, Elsevier, vol. 126(C), pages 78-89.
  19. Yang Li & Binyu Xiong & Yixin Su & Jinrui Tang & Zhiwen Leng, 2019. "Particle Swarm Optimization-Based Power and Temperature Control Scheme for Grid-Connected DFIG-Based Dish-Stirling Solar-Thermal System," Energies, MDPI, vol. 12(7), pages 1-23, April.
  20. Yang, Hang-Suin & Cheng, Chin-Hsiang & Huang, Shang-Ting, 2018. "A complete model for dynamic simulation of a 1-kW class beta-type Stirling engine with rhombic-drive mechanism," Energy, Elsevier, vol. 161(C), pages 892-906.
  21. Rui F. Costa & Brendan D. MacDonald, 2018. "Comparison of the Net Work Output between Stirling and Ericsson Cycles," Energies, MDPI, vol. 11(3), pages 1-16, March.
  22. Wang, Jia & Xu, Weiqing & Ding, Shuiting & Shi, Yan & Cai, Maolin & Rehman, Ali, 2015. "Liquid air fueled open-closed cycle Stirling engine and its exergy analysis," Energy, Elsevier, vol. 90(P1), pages 187-201.
  23. Zhu, Shunmin & Yu, Guoyao & Liang, Kun & Dai, Wei & Luo, Ercang, 2021. "A review of Stirling-engine-based combined heat and power technology," Applied Energy, Elsevier, vol. 294(C).
  24. Chmielewski, Adrian & Gumiński, Robert & Mączak, Jędrzej & Radkowski, Stanisław & Szulim, Przemysław, 2016. "Aspects of balanced development of RES and distributed micro-cogeneration use in Poland: Case study of a µCHP with Stirling engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 930-952.
  25. Cheng, Chin-Hsiang & Yang, Hang-Suin & Keong, Lam, 2013. "Theoretical and experimental study of a 300-W beta-type Stirling engine," Energy, Elsevier, vol. 59(C), pages 590-599.
  26. Buscemi, A. & Guarino, S. & Ciulla, G. & Lo Brano, V., 2021. "A methodology for optimisation of solar dish-Stirling systems size, based on the local frequency distribution of direct normal irradiance," Applied Energy, Elsevier, vol. 303(C).
  27. Cheng, Chin-Hsiang & Yang, Hang-Suin, 2012. "Optimization of geometrical parameters for Stirling engines based on theoretical analysis," Applied Energy, Elsevier, vol. 92(C), pages 395-405.
  28. Wang, Kai & Sanders, Seth R. & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2016. "Stirling cycle engines for recovering low and moderate temperature heat: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 89-108.
  29. Franco Cotana & Antonio Messineo & Alessandro Petrozzi & Valentina Coccia & Gianluca Cavalaglio & Andrea Aquino, 2014. "Comparison of ORC Turbine and Stirling Engine to Produce Electricity from Gasified Poultry Waste," Sustainability, MDPI, vol. 6(9), pages 1-16, August.
  30. Karabulut, H. & Çınar, C. & Oztürk, E. & Yücesu, H.S., 2010. "Torque and power characteristics of a helium charged Stirling engine with a lever controlled displacer driving mechanism," Renewable Energy, Elsevier, vol. 35(1), pages 138-143.
  31. Araoz, Joseph A. & Salomon, Marianne & Alejo, Lucio & Fransson, Torsten H., 2015. "Numerical simulation for the design analysis of kinematic Stirling engines," Applied Energy, Elsevier, vol. 159(C), pages 633-650.
  32. Carlos Ulloa & José Luis Míguez & Jacobo Porteiro & Pablo Eguía & Antón Cacabelos, 2013. "Development of a Transient Model of a Stirling-Based CHP System," Energies, MDPI, vol. 6(7), pages 1-19, June.
  33. Solmaz, Hamit & Safieddin Ardebili, Seyed Mohammad & Aksoy, Fatih & Calam, Alper & Yılmaz, Emre & Arslan, Muhammed, 2020. "Optimization of the operating conditions of a beta-type rhombic drive stirling engine by using response surface method," Energy, Elsevier, vol. 198(C).
  34. Maryam Khoshbazan & Mohammad Hossein Ahmadi & Tingzhen Ming & Jamal Tabe Arjmand & Mohammad Rahimzadeh, 2018. "Thermo-economic analysis and multi-objective optimization of micro-CHP Stirling system for different climates of Iran," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 13(4), pages 388-403.
  35. Peter Durcansky & Radovan Nosek & Jozef Jandacka, 2020. "Use of Stirling Engine for Waste Heat Recovery," Energies, MDPI, vol. 13(16), pages 1-15, August.
  36. Chahartaghi, Mahmood & Sheykhi, Mohammad, 2019. "Energy, environmental and economic evaluations of a CCHP system driven by Stirling engine with helium and hydrogen as working gases," Energy, Elsevier, vol. 174(C), pages 1251-1266.
  37. Langdon-Arms, Samuel & Gschwendtner, Michael & Neumaier, Martin, 2018. "A novel solar-powered liquid piston Stirling refrigerator," Applied Energy, Elsevier, vol. 229(C), pages 603-613.
  38. Karabulut, Halit, 2011. "Dynamic analysis of a free piston Stirling engine working with closed and open thermodynamic cycles," Renewable Energy, Elsevier, vol. 36(6), pages 1704-1709.
  39. Saurabh Singh & Pradip Kumar Sharma & Seo Yeon Moon & Jong Hyuk Park, 2017. "EH-GC: An Efficient and Secure Architecture of Energy Harvesting Green Cloud Infrastructure," Sustainability, MDPI, vol. 9(4), pages 1-18, April.
  40. Cheng, Chin-Hsiang & Yang, Hang-Suin, 2011. "Analytical model for predicting the effect of operating speed on shaft power output of Stirling engines," Energy, Elsevier, vol. 36(10), pages 5899-5908.
  41. Kumaravelu, Thavamalar & Saadon, Syamimi & Abu Talib, Abd Rahim, 2022. "Heat transfer enhancement of a Stirling engine by using fins attachment in an energy recovery system," Energy, Elsevier, vol. 239(PA).
  42. Eid, Eldesouki, 2009. "Performance of a beta-configuration heat engine having a regenerative displacer," Renewable Energy, Elsevier, vol. 34(11), pages 2404-2413.
  43. Hadžiselimović, Miralem & Srpčič, Gregor & Brinovar, Iztok & Praunseis, Zdravko & Seme, Sebastijan & Štumberger, Bojan, 2019. "A novel concept of linear oscillatory synchronous generator designed for a stirling engine," Energy, Elsevier, vol. 180(C), pages 19-27.
  44. Meybodi, Mehdi Aghaei & Behnia, Masud, 2013. "Australian coal mine methane emissions mitigation potential using a Stirling engine-based CHP system," Energy Policy, Elsevier, vol. 62(C), pages 10-18.
  45. Kuban, Lukasz & Stempka, Jakub & Tyliszczak, Artur, 2019. "A 3D-CFD study of a γ-type Stirling engine," Energy, Elsevier, vol. 169(C), pages 142-159.
  46. Cullen, Barry & McGovern, Jim, 2010. "Energy system feasibility study of an Otto cycle/Stirling cycle hybrid automotive engine," Energy, Elsevier, vol. 35(2), pages 1017-1023.
  47. García-Ortiz, Jose V. & González, Ignacio & González, Cristóbal, 2018. "Luter system a new approach to CSP energy diversification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2106-2111.
  48. Cheng, Chin-Hsiang & Yu, Ying-Ju, 2011. "Dynamic simulation of a beta-type Stirling engine with cam-drive mechanism via the combination of the thermodynamic and dynamic models," Renewable Energy, Elsevier, vol. 36(2), pages 714-725.
  49. Moazami Goudarzi, Hosein & Yarahmadi, Mehran & Shafii, Mohammad Behshad, 2017. "Design and construction of a two-phase fluid piston engine based on the structure of fluidyne," Energy, Elsevier, vol. 127(C), pages 660-670.
  50. Liu, Yiwei & Shen, Tianrun & Lv, Xiaochen & Zhang, Guang & Wang, Chao & Gu, Junping & Zhang, Xian & Wang, Qinggong & Chen, Xiong & Quan, Xiaojun & Yao, Wei, 2023. "Investigation on a lunar energy storage and conversion system based on the in-situ resources utilization," Energy, Elsevier, vol. 268(C).
  51. Masoumi, A.P. & Tavakolpour-Saleh, A.R. & Rahideh, A., 2020. "Applying a genetic-fuzzy control scheme to an active free piston Stirling engine: Design and experiment," Applied Energy, Elsevier, vol. 268(C).
  52. Féniès, Gwyddyon & Formosa, Fabien & Ramousse, Julien & Badel, Adrien, 2015. "Double acting Stirling engine: Modeling, experiments and optimization," Applied Energy, Elsevier, vol. 159(C), pages 350-361.
  53. Satpathi, Amitabha & Sil, Shreekantha & Chakravarti, Arani, 2020. "Model of a centrifugal-force-aided convective heat engine - An attempt to miniaturise solar updraft tower technology," Energy, Elsevier, vol. 193(C).
  54. Chen, Wen-Lih & Sirisha, Vadlakonda & Yu, Chi-Yuan & Wang, Yan-Ru & Dai, Ming-Wei & Lasek, Janusz & Li, Yueh-Heng, 2024. "Design and optimization of a combined heat and power system with a fluidized-bed combustor and stirling engine," Energy, Elsevier, vol. 293(C).
  55. Shu, Gequn & Liang, Youcai & Wei, Haiqiao & Tian, Hua & Zhao, Jian & Liu, Lina, 2013. "A review of waste heat recovery on two-stroke IC engine aboard ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 385-401.
  56. Ferreira, Ana Cristina & Silva, João & Teixeira, Senhorinha & Teixeira, José Carlos & Nebra, Silvia Azucena, 2020. "Assessment of the Stirling engine performance comparing two renewable energy sources: Solar energy and biomass," Renewable Energy, Elsevier, vol. 154(C), pages 581-597.
  57. Beltrán-Chacon, Ricardo & Leal-Chavez, Daniel & Sauceda, D. & Pellegrini-Cervantes, Manuel & Borunda, Mónica, 2015. "Design and analysis of a dead volume control for a solar Stirling engine with induction generator," Energy, Elsevier, vol. 93(P2), pages 2593-2603.
  58. Buliński, Zbigniew & Szczygieł, Ireneusz & Krysiński, Tomasz & Stanek, Wojciech & Czarnowska, Lucyna & Gładysz, Paweł & Kabaj, Adam, 2017. "Finite time thermodynamic analysis of small alpha-type Stirling engine in non-ideal polytropic conditions for recovery of LNG cryogenic exergy," Energy, Elsevier, vol. 141(C), pages 2559-2571.
  59. Salvatore Ranieri & Gilberto A. O. Prado & Brendan D. MacDonald, 2018. "Efficiency Reduction in Stirling Engines Resulting from Sinusoidal Motion," Energies, MDPI, vol. 11(11), pages 1-14, October.
  60. Ahmadi, Mohammad H. & Ahmadi, Mohammad-Ali & Pourfayaz, Fathollah, 2017. "Thermal models for analysis of performance of Stirling engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 168-184.
  61. Schneider, T. & Müller, D. & Karl, J., 2020. "A review of thermochemical biomass conversion combined with Stirling engines for the small-scale cogeneration of heat and power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
  62. Luo, Baojun & Xiang, Quanwei & Su, Xiaoxue & Zhang, Shunfeng & Yan, Piaopiao & Liu, Jingping & Li, Ruijie, 2024. "A novel cycle engine for low-grade heat utilization: Principle, conceptual design and thermodynamic analysis," Energy, Elsevier, vol. 301(C).
  63. Cheng, Chin-Hsiang & Yang, Hang-Suin, 2014. "Optimization of rhombic drive mechanism used in beta-type Stirling engine based on dimensionless analysis," Energy, Elsevier, vol. 64(C), pages 970-978.
  64. Yaqi, Li & Yaling, He & Weiwei, Wang, 2011. "Optimization of solar-powered Stirling heat engine with finite-time thermodynamics," Renewable Energy, Elsevier, vol. 36(1), pages 421-427.
  65. Tlili, Iskander, 2012. "Finite time thermodynamic evaluation of endoreversible Stirling heat engine at maximum power conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2234-2241.
  66. Rahmati, A. & Varedi-Koulaei, S.M. & Ahmadi, M.H. & Ahmadi, H., 2022. "Dynamic synthesis of the alpha-type stirling engine based on reducing the output velocity fluctuations using Metaheuristic algorithms," Energy, Elsevier, vol. 238(PB).
  67. Mohammad Hossein Ahmadi & Mohammad-Ali Ahmadi & Mehdi Mehrpooya & Marc A. Rosen, 2015. "Using GMDH Neural Networks to Model the Power and Torque of a Stirling Engine," Sustainability, MDPI, vol. 7(2), pages 1-13, February.
  68. Lai, Xiaotian & Long, Rui & Liu, Zhichun & Liu, Wei, 2018. "Stirling engine powered reverse osmosis for brackish water desalination to utilize moderate temperature heat," Energy, Elsevier, vol. 165(PA), pages 916-930.
  69. Ferreira, Ana C. & Nunes, Manuel L. & Teixeira, José C.F. & Martins, Luís A.S.B. & Teixeira, Senhorinha F.C.F., 2016. "Thermodynamic and economic optimization of a solar-powered Stirling engine for micro-cogeneration purposes," Energy, Elsevier, vol. 111(C), pages 1-17.
  70. Cheng, Chin-Hsiang & Yu, Ying-Ju, 2012. "Combining dynamic and thermodynamic models for dynamic simulation of a beta-type Stirling engine with rhombic-drive mechanism," Renewable Energy, Elsevier, vol. 37(1), pages 161-173.
  71. Marion, Michaël & Louahlia, Hasna & Gualous, Hamid, 2016. "Performances of a CHP Stirling system fuelled with glycerol," Renewable Energy, Elsevier, vol. 86(C), pages 182-191.
  72. Daniarta, S. & Sowa, D. & Błasiak, P. & Imre, A.R. & Kolasiński, P., 2024. "Techno-economic survey of enhancing Power-to-Methane efficiency via waste heat recovery from electrolysis and biomethanation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 194(C).
  73. Ahmadi, Mohammad H. & Ahmadi, Mohammad Ali & Sadatsakkak, Seyed Abbas & Feidt, Michel, 2015. "Connectionist intelligent model estimates output power and torque of stirling engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 871-883.
  74. Buscemi, Alessandro & Lo Brano, Valerio & Chiaruzzi, Christian & Ciulla, Giuseppina & Kalogeri, Christina, 2020. "A validated energy model of a solar dish-Stirling system considering the cleanliness of mirrors," Applied Energy, Elsevier, vol. 260(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.