IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i4p980-d323688.html
   My bibliography  Save this article

Performance Analysis of a Stirling Engine Hybrid Power System

Author

Listed:
  • Pablo Jimenez Zabalaga

    (Facultad de Ciencias y Tecnología, Universidad Mayor de San Simón, Cochabamba 2500, Bolivia)

  • Evelyn Cardozo

    (Facultad de Ciencias y Tecnología, Universidad Mayor de San Simón, Cochabamba 2500, Bolivia)

  • Luis A. Choque Campero

    (Facultad de Ciencias y Tecnología, Universidad Mayor de San Simón, Cochabamba 2500, Bolivia
    Department of Energy Technology, School of Industrial Technology and Management (ITM), KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden)

  • Joseph Adhemar Araoz Ramos

    (Facultad de Ciencias y Tecnología, Universidad Mayor de San Simón, Cochabamba 2500, Bolivia)

Abstract

The Bolivian government’s concerns that are related to reducing the consumption of diesel fuel, which is imported, subsidized, and provided to isolated electric plants in rural communities, have led to the implementation of hybrid power systems. Therefore, this article presents the performance analysis in terms of energy efficiency, economic feasibility, and environmental sustainability of a photovoltaic (PV)/Stirling battery system. The analysis includes the dynamic start-up and cooling phases of the system, and then compares its performance with a hybrid photovoltaic (PV)/diesel/battery system, whose configuration is usually more common. Both systems were initially optimized in size using the well-known energy optimization software tool, HOMER. An estimated demand for a hypothetical case study of electrification for a rural village of 102 households, called “Tacuaral de Mattos”, was also considered. However, since the characteristics of the proposed systems required a detailed analysis of its dynamics, a dynamic model that complemented the HOMER analysis was developed using MATLAB Simulink TM 8.9. The results showed that the PV/Stirling battery system represented a higher performance option to implement in the electrification project, due to its good environmental sustainability (69% savings in CO 2 emissions), economic criterion (11% savings in annualized total cost), and energy efficiency (5% savings in fuel energy conversion).

Suggested Citation

  • Pablo Jimenez Zabalaga & Evelyn Cardozo & Luis A. Choque Campero & Joseph Adhemar Araoz Ramos, 2020. "Performance Analysis of a Stirling Engine Hybrid Power System," Energies, MDPI, vol. 13(4), pages 1-38, February.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:980-:d:323688
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/4/980/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/4/980/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kongtragool, Bancha & Wongwises, Somchai, 2006. "Thermodynamic analysis of a Stirling engine including dead volumes of hot space, cold space and regenerator," Renewable Energy, Elsevier, vol. 31(3), pages 345-359.
    2. Zheng, C.Y. & Wu, J.Y. & Zhai, X.Q., 2014. "A novel operation strategy for CCHP systems based on minimum distance," Applied Energy, Elsevier, vol. 128(C), pages 325-335.
    3. Valenti, G. & Silva, P. & Fergnani, N. & Campanari, S. & Ravidà, A. & Di Marcoberardino, G. & Macchi, E., 2015. "Experimental and numerical study of a micro-cogeneration Stirling unit under diverse conditions of the working fluid," Applied Energy, Elsevier, vol. 160(C), pages 920-929.
    4. Wang, Jiangjiang & Zhai, Zhiqiang (John) & Jing, Youyin & Zhang, Chunfa, 2010. "Particle swarm optimization for redundant building cooling heating and power system," Applied Energy, Elsevier, vol. 87(12), pages 3668-3679, December.
    5. Yang Li & Binyu Xiong & Yixin Su & Jinrui Tang & Zhiwen Leng, 2019. "Particle Swarm Optimization-Based Power and Temperature Control Scheme for Grid-Connected DFIG-Based Dish-Stirling Solar-Thermal System," Energies, MDPI, vol. 12(7), pages 1-23, April.
    6. Sara Ghaem Sigarchian & Anders Malmquist & Viktoria Martin, 2018. "Design Optimization of a Complex Polygeneration System for a Hospital," Energies, MDPI, vol. 11(5), pages 1-24, April.
    7. Papathanassiou, Stavros A & Papadopoulos, Michael P, 2001. "Dynamic characteristics of autonomous wind–diesel systems," Renewable Energy, Elsevier, vol. 23(2), pages 293-311.
    8. Kongtragool, Bancha & Wongwises, Somchai, 2003. "A review of solar-powered Stirling engines and low temperature differential Stirling engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 7(2), pages 131-154, April.
    9. Lombardi, K. & Ugursal, V.I. & Beausoleil-Morrison, I., 2010. "Proposed improvements to a model for characterizing the electrical and thermal energy performance of Stirling engine micro-cogeneration devices based upon experimental observations," Applied Energy, Elsevier, vol. 87(10), pages 3271-3282, October.
    10. Balderrama, Sergio & Lombardi, Francesco & Riva, Fabio & Canedo, Walter & Colombo, Emanuela & Quoilin, Sylvain, 2019. "A two-stage linear programming optimization framework for isolated hybrid microgrids in a rural context: The case study of the “El Espino” community," Energy, Elsevier, vol. 188(C).
    11. Puech, Pascal & Tishkova, Victoria, 2011. "Thermodynamic analysis of a Stirling engine including regenerator dead volume," Renewable Energy, Elsevier, vol. 36(2), pages 872-878.
    12. Thombare, D.G. & Verma, S.K., 2008. "Technological development in the Stirling cycle engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 1-38, January.
    13. Li, Longxi & Mu, Hailin & Gao, Weijun & Li, Miao, 2014. "Optimization and analysis of CCHP system based on energy loads coupling of residential and office buildings," Applied Energy, Elsevier, vol. 136(C), pages 206-216.
    14. Hua-Ju Shih, 2019. "An Analysis Model Combining Gamma-Type Stirling Engine and Power Converter," Energies, MDPI, vol. 12(7), pages 1-18, April.
    15. Maraver, Daniel & Sin, Ana & Royo, Javier & Sebastián, Fernando, 2013. "Assessment of CCHP systems based on biomass combustion for small-scale applications through a review of the technology and analysis of energy efficiency parameters," Applied Energy, Elsevier, vol. 102(C), pages 1303-1313.
    16. Rahman, Asadur & Saikia, Lalit Chandra & Sinha, Nidul, 2017. "Automatic generation control of an interconnected two-area hybrid thermal system considering dish-stirling solar thermal and wind turbine system," Renewable Energy, Elsevier, vol. 105(C), pages 41-54.
    17. Corria, Maria Eugenia & Cobas, Vladimir Melian & Silva Lora, Electo, 2006. "Perspectives of Stirling engines use for distributed generation in Brazil," Energy Policy, Elsevier, vol. 34(18), pages 3402-3408, December.
    18. Rogdakis, E.D. & Antonakos, G.D. & Koronaki, I.P., 2012. "Thermodynamic analysis and experimental investigation of a Solo V161 Stirling cogeneration unit," Energy, Elsevier, vol. 45(1), pages 503-511.
    19. Ghaem Sigarchian, Sara & Paleta, Rita & Malmquist, Anders & Pina, André, 2015. "Feasibility study of using a biogas engine as backup in a decentralized hybrid (PV/wind/battery) power generation system – Case study Kenya," Energy, Elsevier, vol. 90(P2), pages 1830-1841.
    20. Balcombe, Paul & Rigby, Dan & Azapagic, Adisa, 2015. "Environmental impacts of microgeneration: Integrating solar PV, Stirling engine CHP and battery storage," Applied Energy, Elsevier, vol. 139(C), pages 245-259.
    21. Ferreira, Ana C. & Nunes, Manuel L. & Teixeira, José C.F. & Martins, Luís A.S.B. & Teixeira, Senhorinha F.C.F., 2016. "Thermodynamic and economic optimization of a solar-powered Stirling engine for micro-cogeneration purposes," Energy, Elsevier, vol. 111(C), pages 1-17.
    22. Carlos Ulloa & José Luis Míguez & Jacobo Porteiro & Pablo Eguía & Antón Cacabelos, 2013. "Development of a Transient Model of a Stirling-Based CHP System," Energies, MDPI, vol. 6(7), pages 1-19, June.
    23. Pickering, B. & Choudhary, R., 2019. "District energy system optimisation under uncertain demand: Handling data-driven stochastic profiles," Applied Energy, Elsevier, vol. 236(C), pages 1138-1157.
    24. Barbieri, Enrico Saverio & Spina, Pier Ruggero & Venturini, Mauro, 2012. "Analysis of innovative micro-CHP systems to meet household energy demands," Applied Energy, Elsevier, vol. 97(C), pages 723-733.
    25. Costa, Sol-Carolina & Tutar, Mustafa & Barreno, Igor & Esnaola, Jon-Ander & Barrutia, Haritz & García, David & González, Miguel-Angel & Prieto, Jesús-Ignacio, 2014. "Experimental and numerical flow investigation of Stirling engine regenerator," Energy, Elsevier, vol. 72(C), pages 800-812.
    26. Bianchi, Michele & De Pascale, Andrea & Spina, Pier Ruggero, 2012. "Guidelines for residential micro-CHP systems design," Applied Energy, Elsevier, vol. 97(C), pages 673-685.
    27. Zhu, Shunmin & Yu, Guoyao & O, Jongmin & Xu, Tao & Wu, Zhanghua & Dai, Wei & Luo, Ercang, 2018. "Modeling and experimental investigation of a free-piston Stirling engine-based micro-combined heat and power system," Applied Energy, Elsevier, vol. 226(C), pages 522-533.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alberto Fichera & Elisa Marrasso & Maurizio Sasso & Rosaria Volpe, 2020. "Energy, Environmental and Economic Performance of an Urban Community Hybrid Distributed Energy System," Energies, MDPI, vol. 13(10), pages 1-19, May.
    2. Heyam Al-Najjar & Christoph Pfeifer & Rafat Al Afif & Hala J. El-Khozondar, 2022. "Performance Evaluation of a Hybrid Grid-Connected Photovoltaic Biogas-Generator Power System," Energies, MDPI, vol. 15(9), pages 1-22, April.
    3. Sonja Kallio & Monica Siroux, 2023. "Exergy and Exergy-Economic Approach to Evaluate Hybrid Renewable Energy Systems in Buildings," Energies, MDPI, vol. 16(3), pages 1-22, January.
    4. Jean-Michel Clairand & Carlos Álvarez-Bel & Javier Rodríguez-García & Guillermo Escrivá-Escrivá, 2020. "Impact of Electric Vehicle Charging Strategy on the Long-Term Planning of an Isolated Microgrid," Energies, MDPI, vol. 13(13), pages 1-18, July.
    5. Dan-Adrian Mocanu & Viorel Bădescu & Ciprian Bucur & Iuliana Ștefan & Elena Carcadea & Maria Simona Răboacă & Ioana Manta, 2020. "PLC Automation and Control Strategy in a Stirling Solar Power System," Energies, MDPI, vol. 13(8), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Shunmin & Yu, Guoyao & Liang, Kun & Dai, Wei & Luo, Ercang, 2021. "A review of Stirling-engine-based combined heat and power technology," Applied Energy, Elsevier, vol. 294(C).
    2. Ferreira, Ana Cristina & Silva, João & Teixeira, Senhorinha & Teixeira, José Carlos & Nebra, Silvia Azucena, 2020. "Assessment of the Stirling engine performance comparing two renewable energy sources: Solar energy and biomass," Renewable Energy, Elsevier, vol. 154(C), pages 581-597.
    3. Araoz, Joseph A. & Salomon, Marianne & Alejo, Lucio & Fransson, Torsten H., 2015. "Numerical simulation for the design analysis of kinematic Stirling engines," Applied Energy, Elsevier, vol. 159(C), pages 633-650.
    4. Ferreira, Ana C. & Nunes, Manuel L. & Teixeira, José C.F. & Martins, Luís A.S.B. & Teixeira, Senhorinha F.C.F., 2016. "Thermodynamic and economic optimization of a solar-powered Stirling engine for micro-cogeneration purposes," Energy, Elsevier, vol. 111(C), pages 1-17.
    5. Chahartaghi, Mahmood & Sheykhi, Mohammad, 2019. "Energy, environmental and economic evaluations of a CCHP system driven by Stirling engine with helium and hydrogen as working gases," Energy, Elsevier, vol. 174(C), pages 1251-1266.
    6. Uchman, Wojciech & Kotowicz, Janusz & Li, Kin Fun, 2021. "Evaluation of a micro-cogeneration unit with integrated electrical energy storage for residential application," Applied Energy, Elsevier, vol. 282(PA).
    7. Wojciech Uchman & Janusz Kotowicz & Leszek Remiorz, 2020. "An Experimental Data-Driven Model of a Micro-Cogeneration Installation for Time-Domain Simulation and System Analysis," Energies, MDPI, vol. 13(11), pages 1-26, June.
    8. Marion, Michaël & Louahlia, Hasna & Gualous, Hamid, 2016. "Performances of a CHP Stirling system fuelled with glycerol," Renewable Energy, Elsevier, vol. 86(C), pages 182-191.
    9. Gimelli, A. & Mottola, F. & Muccillo, M. & Proto, D. & Amoresano, A. & Andreotti, A. & Langella, G., 2019. "Optimal configuration of modular cogeneration plants integrated by a battery energy storage system providing peak shaving service," Applied Energy, Elsevier, vol. 242(C), pages 974-993.
    10. Zhu, Shunmin & Yu, Guoyao & O, Jongmin & Xu, Tao & Wu, Zhanghua & Dai, Wei & Luo, Ercang, 2018. "Modeling and experimental investigation of a free-piston Stirling engine-based micro-combined heat and power system," Applied Energy, Elsevier, vol. 226(C), pages 522-533.
    11. Buliński, Zbigniew & Szczygieł, Ireneusz & Krysiński, Tomasz & Stanek, Wojciech & Czarnowska, Lucyna & Gładysz, Paweł & Kabaj, Adam, 2017. "Finite time thermodynamic analysis of small alpha-type Stirling engine in non-ideal polytropic conditions for recovery of LNG cryogenic exergy," Energy, Elsevier, vol. 141(C), pages 2559-2571.
    12. Sara Ghaem Sigarchian & Anders Malmquist & Viktoria Martin, 2018. "Design Optimization of a Complex Polygeneration System for a Hospital," Energies, MDPI, vol. 11(5), pages 1-24, April.
    13. Szczygieł, Ireneusz & Stanek, Wojciech & Szargut, Jan, 2016. "Application of the Stirling engine driven with cryogenic exergy of LNG (liquefied natural gas) for the production of electricity," Energy, Elsevier, vol. 105(C), pages 25-31.
    14. Ziviani, Davide & Beyene, Asfaw & Venturini, Mauro, 2014. "Advances and challenges in ORC systems modeling for low grade thermal energy recovery," Applied Energy, Elsevier, vol. 121(C), pages 79-95.
    15. İncili, Veysel & Karaca Dolgun, Gülşah & Georgiev, Aleksandar & Keçebaş, Ali & Çetin, Numan Sabit, 2022. "Performance evaluation of novel photovoltaic and Stirling assisted hybrid micro combined heat and power system," Renewable Energy, Elsevier, vol. 189(C), pages 129-138.
    16. Hadžiselimović, Miralem & Srpčič, Gregor & Brinovar, Iztok & Praunseis, Zdravko & Seme, Sebastijan & Štumberger, Bojan, 2019. "A novel concept of linear oscillatory synchronous generator designed for a stirling engine," Energy, Elsevier, vol. 180(C), pages 19-27.
    17. Cheng, Chin-Hsiang & Yu, Ying-Ju, 2012. "Combining dynamic and thermodynamic models for dynamic simulation of a beta-type Stirling engine with rhombic-drive mechanism," Renewable Energy, Elsevier, vol. 37(1), pages 161-173.
    18. Wang, Jiangjiang & Sui, Jun & Jin, Hongguang, 2015. "An improved operation strategy of combined cooling heating and power system following electrical load," Energy, Elsevier, vol. 85(C), pages 654-666.
    19. Sara Ghaem Sigarchian & Anders Malmquist & Viktoria Martin, 2018. "Design Optimization of a Small-Scale Polygeneration Energy System in Different Climate Zones in Iran," Energies, MDPI, vol. 11(5), pages 1-19, May.
    20. Kotowicz, Janusz & Uchman, Wojciech, 2021. "Analysis of the integrated energy system in residential scale: Photovoltaics, micro-cogeneration and electrical energy storage," Energy, Elsevier, vol. 227(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:980-:d:323688. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.