IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v293y2024ics036054422400481x.html
   My bibliography  Save this article

Design and optimization of a combined heat and power system with a fluidized-bed combustor and stirling engine

Author

Listed:
  • Chen, Wen-Lih
  • Sirisha, Vadlakonda
  • Yu, Chi-Yuan
  • Wang, Yan-Ru
  • Dai, Ming-Wei
  • Lasek, Janusz
  • Li, Yueh-Heng

Abstract

In this study, a fluidized-bed biofuel system was integrated with a Stirling engine (SE) to create a combined heat and power (CHP) system with high energy efficiency. Methods for ensuring the stability of the SE and fluidized-bed combustion were investigated and implemented. The proposed design was tested experimentally, and the system successfully produced electricity from the heat of the flue gas generated during biomass combustion. The Taguchi method was employed to maximize the temperature of the fluidized bed by modifying three parameters: the sand height, air flow rate, and biomass feed rate. The biomass used in this study was discarded mushroom sawdust waste. The biomass feed rate was varied from 9.5 to 17 g/min, and the air flow rate was varied from 50 to 60 L/min. The integrated CHP system was found to yield 90−100 W of electric power and 1077.3 W of heat energy for producing hot water. The oxygen, carbon dioxide, carbon monoxide, and nitric oxide concentrations of the flue gas produced under the optimized system parameters were analyzed, and minimal emissions of carbon monoxide and nitric oxides, which are harmful gases, were discovered. In most experiments on SEs in the literature, liquid or gaseous fuels have been used to power the engine. However, this study successfully used solid biomass fuel to power a practical SE, thus widening the knowledge on the utilization of this renewable energy source for electricity generation. The results of this study indicate that the proposed CHP system is stable, clean, and efficient. This system potentially provides a solution for two problems, namely the disposal of mushroom sawdust waste and the eco-friendly generation of heat and electricity. Therefore, the proposed system is promising for green and sustainable power generation in the future.

Suggested Citation

  • Chen, Wen-Lih & Sirisha, Vadlakonda & Yu, Chi-Yuan & Wang, Yan-Ru & Dai, Ming-Wei & Lasek, Janusz & Li, Yueh-Heng, 2024. "Design and optimization of a combined heat and power system with a fluidized-bed combustor and stirling engine," Energy, Elsevier, vol. 293(C).
  • Handle: RePEc:eee:energy:v:293:y:2024:i:c:s036054422400481x
    DOI: 10.1016/j.energy.2024.130709
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422400481X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130709?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zheng Lian & Yixiao Wang & Xiyue Zhang & Abubakar Yusuf & Lord Famiyeh & David Murindababisha & Huan Jin & Yiyang Liu & Jun He & Yunshan Wang & Gang Yang & Yong Sun, 2021. "Hydrogen Production by Fluidized Bed Reactors: A Quantitative Perspective Using the Supervised Machine Learning Approach," J, MDPI, vol. 4(3), pages 1-22, July.
    2. Huang, Chao-Wei & Li, Yueh-Heng & Xiao, Kai-Lin & Lasek, Janusz, 2019. "Cofiring characteristics of coal blended with torrefied Miscanthus biochar optimized with three Taguchi indexes," Energy, Elsevier, vol. 172(C), pages 566-579.
    3. Chen, Wen-Lih & Currao, Gaetano & Li, Yueh-Heng & Kao, Chien-Chun, 2023. "Employing Taguchi method to optimize the performance of a microscale combined heat and power system with Stirling engine and thermophotovoltaic array," Energy, Elsevier, vol. 270(C).
    4. Chen, Guan-Bang & Li, Yueh-Heng & Cheng, Tsarng-Sheng & Chao, Yei-Chin, 2013. "Chemical effect of hydrogen peroxide addition on characteristics of methane–air combustion," Energy, Elsevier, vol. 55(C), pages 564-570.
    5. Zhu, Shunmin & Yu, Guoyao & Liang, Kun & Dai, Wei & Luo, Ercang, 2021. "A review of Stirling-engine-based combined heat and power technology," Applied Energy, Elsevier, vol. 294(C).
    6. Tomasz Kalak, 2023. "Potential Use of Industrial Biomass Waste as a Sustainable Energy Source in the Future," Energies, MDPI, vol. 16(4), pages 1-25, February.
    7. Dominik Müller & Thomas Plankenbühler & Jürgen Karl, 2020. "A Methodology for Measuring the Heat Release Efficiency in Bubbling Fluidised Bed Combustors," Energies, MDPI, vol. 13(10), pages 1-19, May.
    8. Chen, Guan-Lin & Chen, Guan-Bang & Li, Yueh-Heng & Wu, Wen-Teng, 2014. "A study of thermal pyrolysis for castor meal using the Taguchi method," Energy, Elsevier, vol. 71(C), pages 62-70.
    9. Li, Yueh-Heng & Reddy, Sareddy Kullai & Chen, Chun-Han, 2021. "Effects of the nitrous oxide decomposition reaction on soot precursors in nitrous oxide/ethylene diffusion flames," Energy, Elsevier, vol. 235(C).
    10. Thombare, D.G. & Verma, S.K., 2008. "Technological development in the Stirling cycle engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 1-38, January.
    11. Chen, Wen-Lih & Huang, Chao-Wei & Li, Yueh-Heng & Kao, Chien-Chun & Cong, Huynh Thanh, 2020. "Biosyngas-fueled platinum reactor applied in micro combined heat and power system with a thermophotovoltaic array and stirling engine," Energy, Elsevier, vol. 194(C).
    12. Aberilla, Jhud Mikhail & Gallego-Schmid, Alejandro & Azapagic, Adisa, 2019. "Environmental sustainability of small-scale biomass power technologies for agricultural communities in developing countries," Renewable Energy, Elsevier, vol. 141(C), pages 493-506.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Wen-Lih & Currao, Gaetano & Li, Yueh-Heng & Kao, Chien-Chun, 2023. "Employing Taguchi method to optimize the performance of a microscale combined heat and power system with Stirling engine and thermophotovoltaic array," Energy, Elsevier, vol. 270(C).
    2. Daniarta, S. & Sowa, D. & Błasiak, P. & Imre, A.R. & Kolasiński, P., 2024. "Techno-economic survey of enhancing Power-to-Methane efficiency via waste heat recovery from electrolysis and biomethanation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 194(C).
    3. Liu, Yiwei & Shen, Tianrun & Lv, Xiaochen & Zhang, Guang & Wang, Chao & Gu, Junping & Zhang, Xian & Wang, Qinggong & Chen, Xiong & Quan, Xiaojun & Yao, Wei, 2023. "Investigation on a lunar energy storage and conversion system based on the in-situ resources utilization," Energy, Elsevier, vol. 268(C).
    4. Chen, Guan-Bang & Li, Yueh-Heng & Chen, Guan-Lin & Wu, Wen-Teng, 2017. "Effects of catalysts on pyrolysis of castor meal," Energy, Elsevier, vol. 119(C), pages 1-9.
    5. Guan-Bang Chen & Jia-Wen Li & Hsien-Tsung Lin & Fang-Hsien Wu & Yei-Chin Chao, 2018. "A Study of the Production and Combustion Characteristics of Pyrolytic Oil from Sewage Sludge Using the Taguchi Method," Energies, MDPI, vol. 11(9), pages 1-17, August.
    6. Zhao, Tingting & Jiang, Weitao & Niu, Dong & Liu, Hongzhong & Chen, Bangdao & Shi, Yongsheng & Yin, Lei & Lu, Bingheng, 2017. "Flexible pyroelectric device for scavenging thermal energy from chemical process and as self-powered temperature monitor," Applied Energy, Elsevier, vol. 195(C), pages 754-760.
    7. Cheng, Chin-Hsiang & Yu, Ying-Ju, 2012. "Combining dynamic and thermodynamic models for dynamic simulation of a beta-type Stirling engine with rhombic-drive mechanism," Renewable Energy, Elsevier, vol. 37(1), pages 161-173.
    8. Marion, Michaël & Louahlia, Hasna & Gualous, Hamid, 2016. "Performances of a CHP Stirling system fuelled with glycerol," Renewable Energy, Elsevier, vol. 86(C), pages 182-191.
    9. Wander, Paulo R. & Bianchi, Flávio M. & Caetano, Nattan R. & Klunk, Marcos A. & Indrusiak, Maria Luiza S., 2020. "Cofiring low-rank coal and biomass in a bubbling fluidized bed with varying excess air ratio and fluidization velocity," Energy, Elsevier, vol. 203(C).
    10. Yu, Minjie & Xu, Lei & Cui, Haichuan & Liu, Zhichun & Liu, Wei, 2024. "Characteristics and potential of a novel inclined-flow stirling regenerator constructed by sinusoidal corrugated channels," Energy, Elsevier, vol. 288(C).
    11. Karabulut, H. & Çınar, C. & Oztürk, E. & Yücesu, H.S., 2010. "Torque and power characteristics of a helium charged Stirling engine with a lever controlled displacer driving mechanism," Renewable Energy, Elsevier, vol. 35(1), pages 138-143.
    12. Pablo Jimenez Zabalaga & Evelyn Cardozo & Luis A. Choque Campero & Joseph Adhemar Araoz Ramos, 2020. "Performance Analysis of a Stirling Engine Hybrid Power System," Energies, MDPI, vol. 13(4), pages 1-38, February.
    13. Cheng, Chin-Hsiang & Yang, Hang-Suin, 2011. "Analytical model for predicting the effect of operating speed on shaft power output of Stirling engines," Energy, Elsevier, vol. 36(10), pages 5899-5908.
    14. Masoumi, A.P. & Tavakolpour-Saleh, A.R. & Rahideh, A., 2020. "Applying a genetic-fuzzy control scheme to an active free piston Stirling engine: Design and experiment," Applied Energy, Elsevier, vol. 268(C).
    15. Ferreira, Ana C. & Nunes, Manuel L. & Teixeira, José C.F. & Martins, Luís A.S.B. & Teixeira, Senhorinha F.C.F., 2016. "Thermodynamic and economic optimization of a solar-powered Stirling engine for micro-cogeneration purposes," Energy, Elsevier, vol. 111(C), pages 1-17.
    16. Cheng, Chin-Hsiang & Yang, Hang-Suin & Jhou, Bing-Yi & Chen, Yi-Cheng & Wang, Yu-Jen, 2013. "Dynamic simulation of thermal-lag Stirling engines," Applied Energy, Elsevier, vol. 108(C), pages 466-476.
    17. Wang, Kai & Sanders, Seth R. & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2016. "Stirling cycle engines for recovering low and moderate temperature heat: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 89-108.
    18. Mirosław Wyszkowski & Natalia Kordala, 2024. "Trace Elements in Maize Biomass Used to Phyto-Stabilise Iron-Contaminated Soils for Energy Production," Energies, MDPI, vol. 17(12), pages 1-15, June.
    19. Cheng, Chin-Hsiang & Yu, Ying-Ju, 2011. "Dynamic simulation of a beta-type Stirling engine with cam-drive mechanism via the combination of the thermodynamic and dynamic models," Renewable Energy, Elsevier, vol. 36(2), pages 714-725.
    20. Moazami Goudarzi, Hosein & Yarahmadi, Mehran & Shafii, Mohammad Behshad, 2017. "Design and construction of a two-phase fluid piston engine based on the structure of fluidyne," Energy, Elsevier, vol. 127(C), pages 660-670.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:293:y:2024:i:c:s036054422400481x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.