IDEAS home Printed from https://ideas.repec.org/r/eee/econom/v222y2021i1p429-450.html
   My bibliography  Save this item

Autoencoder asset pricing models

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Cakici, Nusret & Zaremba, Adam, 2024. "What drives stock returns across countries? Insights from machine learning models," International Review of Financial Analysis, Elsevier, vol. 96(PA).
  2. Mohammad Abdullah & Mohammad Ashraful Ferdous Chowdhury & Ajim Uddin & Syed Moudud‐Ul‐Huq, 2023. "Forecasting nonperforming loans using machine learning," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1664-1689, November.
  3. Cakici, Nusret & Fieberg, Christian & Metko, Daniel & Zaremba, Adam, 2023. "Machine learning goes global: Cross-sectional return predictability in international stock markets," Journal of Economic Dynamics and Control, Elsevier, vol. 155(C).
  4. Cheng, Tingting & Dong, Chaohua & Gao, Jiti & Linton, Oliver, 2024. "GMM estimation for high-dimensional panel data models," Journal of Econometrics, Elsevier, vol. 244(1).
  5. Jorge Guijarro-Ordonez & Markus Pelger & Greg Zanotti, 2021. "Deep Learning Statistical Arbitrage," Papers 2106.04028, arXiv.org, revised Oct 2022.
  6. Cheung, Ying Lun, 2024. "Avoiding jumps in the rotation matrix of time-varying factor models," Finance Research Letters, Elsevier, vol. 67(PB).
  7. Bakalli, Gaetan & Guerrier, Stéphane & Scaillet, Olivier, 2023. "A penalized two-pass regression to predict stock returns with time-varying risk premia," Journal of Econometrics, Elsevier, vol. 237(2).
  8. Alain-Philippe Fortin & Patrick Gagliardini & O. Scaillet, 2022. "Eigenvalue tests for the number of latent factors in short panels," Swiss Finance Institute Research Paper Series 22-81, Swiss Finance Institute.
  9. Tianqi Wang & Shubham Singh, 2024. "KAN based Autoencoders for Factor Models," Papers 2408.02694, arXiv.org.
  10. Zhao, Xin & Guo, Yanhong & Liu, Chuanren, 2024. "Leveraging corporate governance characteristics for stock crash risk assessment," International Review of Financial Analysis, Elsevier, vol. 96(PA).
  11. Adcock, Christopher & Bessler, Wolfgang & Conlon, Thomas, 2022. "Characteristic-sorted portfolios and macroeconomic risks—An orthogonal decomposition," Journal of Empirical Finance, Elsevier, vol. 65(C), pages 24-50.
  12. Dohyun Chun & Jongho Kang & Jihun Kim, 2024. "Forecasting returns with machine learning and optimizing global portfolios: evidence from the Korean and U.S. stock markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-30, December.
  13. Helena Chuliá & Sabuhi Khalili & Jorge M. Uribe, 2024. "Monitoring time-varying systemic risk in sovereign debt and currency markets with generative AI," IREA Working Papers 202402, University of Barcelona, Research Institute of Applied Economics, revised Feb 2024.
  14. Vafai, Nima & Rakowski, David, 2024. "The sources of portfolio volatility and mutual fund performance," International Review of Financial Analysis, Elsevier, vol. 91(C).
  15. Bruno Spilak & Wolfgang Karl Hardle, 2022. "Risk budget portfolios with convex Non-negative Matrix Factorization," Papers 2204.02757, arXiv.org, revised Jun 2023.
  16. Shu, Lei & Lu, Feiyang & Chen, Yu, 2023. "Robust forecasting with scaled independent component analysis," Finance Research Letters, Elsevier, vol. 51(C).
  17. David Alaminos & Ignacio Esteban & M. Belén Salas, 2023. "Neural networks for estimating Macro Asset Pricing model in football clubs," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 30(2), pages 57-75, April.
  18. Constantinos Kardaras & Hyeng Keun Koo & Johannes Ruf, 2022. "Estimation of growth in fund models," Papers 2208.02573, arXiv.org.
  19. Liu, Zhenya & Teka, Hanen & You, Rongyu, 2023. "Conditional autoencoder pricing model for energy commodities," Resources Policy, Elsevier, vol. 86(PA).
  20. Dashan Huang & Fuwei Jiang & Kunpeng Li & Guoshi Tong & Guofu Zhou, 2022. "Scaled PCA: A New Approach to Dimension Reduction," Management Science, INFORMS, vol. 68(3), pages 1678-1695, March.
  21. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
  22. Pedro M. Mirete-Ferrer & Alberto Garcia-Garcia & Juan Samuel Baixauli-Soler & Maria A. Prats, 2022. "A Review on Machine Learning for Asset Management," Risks, MDPI, vol. 10(4), pages 1-46, April.
  23. Gang Chu & John W. Goodell & Dehua Shen & Yongjie Zhang, 2022. "Machine learning to establish proxies for investor attention: evidence of improved stock-return prediction," Annals of Operations Research, Springer, vol. 318(1), pages 103-128, November.
  24. Castro-Iragorri, C & Ramírez, J, 2021. "Forecasting Dynamic Term Structure Models with Autoencoders," Documentos de Trabajo 19431, Universidad del Rosario.
  25. Axel Groß-Klußmann, 2024. "Learning deep news sentiment representations for macro-finance," Digital Finance, Springer, vol. 6(3), pages 341-377, September.
  26. Zikai Wei & Anyi Rao & Bo Dai & Dahua Lin, 2023. "HireVAE: An Online and Adaptive Factor Model Based on Hierarchical and Regime-Switch VAE," Papers 2306.02848, arXiv.org.
  27. Eghbal Rahimikia & Stefan Zohren & Ser-Huang Poon, 2021. "Realised Volatility Forecasting: Machine Learning via Financial Word Embedding," Papers 2108.00480, arXiv.org, revised Nov 2024.
  28. Victor Chernozhukov & Whitney Newey & Rahul Singh & Vasilis Syrgkanis, 2020. "Adversarial Estimation of Riesz Representers," Papers 2101.00009, arXiv.org, revised Apr 2024.
  29. Leippold, Markus & Wang, Qian & Zhou, Wenyu, 2022. "Machine learning in the Chinese stock market," Journal of Financial Economics, Elsevier, vol. 145(2), pages 64-82.
  30. Matthew F. Dixon & Nicholas G. Polson & Kemen Goicoechea, 2022. "Deep Partial Least Squares for Empirical Asset Pricing," Papers 2206.10014, arXiv.org.
  31. Trent Spears & Stefan Zohren & Stephen Roberts, 2023. "On statistical arbitrage under a conditional factor model of equity returns," Papers 2309.02205, arXiv.org.
  32. Cakici, Nusret & Shahzad, Syed Jawad Hussain & Będowska-Sójka, Barbara & Zaremba, Adam, 2024. "Machine learning and the cross-section of cryptocurrency returns," International Review of Financial Analysis, Elsevier, vol. 94(C).
  33. Ni Zhan & Yijia Sun & Aman Jakhar & He Liu, 2021. "Graphical Models for Financial Time Series and Portfolio Selection," Papers 2101.09214, arXiv.org.
  34. Yilun Wang & Shengjie Guo, 2024. "RVRAE: A Dynamic Factor Model Based on Variational Recurrent Autoencoder for Stock Returns Prediction," Papers 2403.02500, arXiv.org.
  35. Hoang, Daniel & Wiegratz, Kevin, 2022. "Machine learning methods in finance: Recent applications and prospects," Working Paper Series in Economics 158, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
  36. Xiaolu Wei & Hongbing Ouyang, 2023. "Forecasting Carbon Price Using Double Shrinkage Methods," IJERPH, MDPI, vol. 20(2), pages 1-20, January.
  37. Daniel Poh & Stephen Roberts & Stefan Zohren, 2022. "Transfer Ranking in Finance: Applications to Cross-Sectional Momentum with Data Scarcity," Papers 2208.09968, arXiv.org, revised Feb 2023.
  38. Adam Baybutt, 2024. "Dynamic Latent-Factor Model with High-Dimensional Asset Characteristics," Papers 2405.15721, arXiv.org.
  39. Massimiliano Marcellino & Michael Pfarrhofer, 2024. "Bayesian nonparametric methods for macroeconomic forecasting," Chapters, in: Michael P. Clements & Ana Beatriz Galvão (ed.), Handbook of Research Methods and Applications in Macroeconomic Forecasting, chapter 5, pages 90-125, Edward Elgar Publishing.
  40. Peter B. Lerner, 2022. "Fourier Integral Operator Model of Market Liquidity: The Chinese Experience 2009–2010," Mathematics, MDPI, vol. 10(14), pages 1-25, July.
  41. Nadja Klein & Michael Stanley Smith & David J. Nott, 2023. "Deep distributional time series models and the probabilistic forecasting of intraday electricity prices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(4), pages 493-511, June.
  42. Shuo Sun & Rundong Wang & Bo An, 2021. "Reinforcement Learning for Quantitative Trading," Papers 2109.13851, arXiv.org.
  43. Li Rong Wang & Hsuan Fu & Xiuyi Fan, 2023. "Stock Price Predictability and the Business Cycle via Machine Learning," Papers 2304.09937, arXiv.org.
  44. Qihui Chen, 2022. "A Unified Framework for Estimation of High-dimensional Conditional Factor Models," Papers 2209.00391, arXiv.org.
  45. Zhu, Zhoufan & Zhang, Ningning & Zhu, Ke, 2024. "Big portfolio selection by graph-based conditional moments method," Journal of Empirical Finance, Elsevier, vol. 78(C).
  46. Jiti Gao & Fei Liu & Bin Peng & Yanrong Yang, 2023. "Localized Neural Network Modelling of Time Series: A Case Study on US Monetary Policy," Papers 2306.05593, arXiv.org, revised Jul 2024.
  47. Ilias Chronopoulos & Katerina Chrysikou & George Kapetanios & James Mitchell & Aristeidis Raftapostolos, 2023. "Deep Neural Network Estimation in Panel Data Models," Papers 2305.19921, arXiv.org.
  48. Jiti Gao & Bin Peng & Yayi Yan, 2022. "Higher-order Expansions and Inference for Panel Data Models," Papers 2205.00577, arXiv.org, revised Jun 2023.
  49. Tian Ma & Cunfei Liao & Fuwei Jiang, 2023. "Timing the factor zoo via deep learning: Evidence from China," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 63(1), pages 485-505, March.
  50. Junyi Ye & Bhaskar Goswami & Jingyi Gu & Ajim Uddin & Guiling Wang, 2024. "From Factor Models to Deep Learning: Machine Learning in Reshaping Empirical Asset Pricing," Papers 2403.06779, arXiv.org.
  51. Joy Dip Das & Ruppa K. Thulasiram & Christopher Henry & Aerambamoorthy Thavaneswaran, 2024. "Encoder–Decoder Based LSTM and GRU Architectures for Stocks and Cryptocurrency Prediction," JRFM, MDPI, vol. 17(5), pages 1-23, May.
  52. Fabian Krause & Jan-Peter Calliess, 2024. "End-to-End Policy Learning of a Statistical Arbitrage Autoencoder Architecture," Papers 2402.08233, arXiv.org.
  53. Achintya Gopal, 2024. "NeuralFactors: A Novel Factor Learning Approach to Generative Modeling of Equities," Papers 2408.01499, arXiv.org.
  54. Doron Avramov & Si Cheng & Lior Metzker & Stefan Voigt, 2023. "Integrating Factor Models," Journal of Finance, American Finance Association, vol. 78(3), pages 1593-1646, June.
  55. Lin, Weidong & Taamouti, Abderrahim, 2024. "Portfolio selection under non-gaussianity and systemic risk: A machine learning based forecasting approach," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1179-1188.
  56. Ilias Chronopoulos & Aristeidis Raftapostolos & George Kapetanios, 2024. "Forecasting Value-at-Risk Using Deep Neural Network Quantile Regression," Journal of Financial Econometrics, Oxford University Press, vol. 22(3), pages 636-669.
  57. Huei-Wen Teng & Yu-Hsien Li, 2023. "Can deep neural networks outperform Fama-MacBeth regression and other supervised learning approaches in stock returns prediction with asset-pricing factors?," Digital Finance, Springer, vol. 5(1), pages 149-182, March.
  58. Ma, Tian & Sheng, Haoyun & Wang, Yuejie, 2024. "Noisy market, machine learning and fundamental momentum," Pacific-Basin Finance Journal, Elsevier, vol. 86(C).
  59. Adel Javanmard & Jingwei Ji & Renyuan Xu, 2024. "Multi-Task Dynamic Pricing in Credit Market with Contextual Information," Papers 2410.14839, arXiv.org, revised Oct 2024.
  60. Andrés Alonso & José Manuel Carbó, 2022. "Accuracy of explanations of machine learning models for credit decisions," Working Papers 2222, Banco de España.
  61. Yulin Liu & Luyao Zhang, 2022. "Cryptocurrency Valuation: An Explainable AI Approach," Papers 2201.12893, arXiv.org, revised Jul 2023.
  62. Beckmeyer, Heiner & Wiedemann, Timo, 2022. "Recovering Missing Firm Characteristics with Attention-Based Machine Learning," VfS Annual Conference 2022 (Basel): Big Data in Economics 264135, Verein für Socialpolitik / German Economic Association.
  63. Jozef Barunik & Martin Hronec & Ondrej Tobek, 2024. "Predicting the distributions of stock returns around the globe in the era of big data and learning," Papers 2408.07497, arXiv.org.
  64. Dapeng Li & Feiyang Pan & Jia He & Zhiwei Xu & Dandan Tu & Guoliang Fan, 2023. "Style Miner: Find Significant and Stable Explanatory Factors in Time Series with Constrained Reinforcement Learning," Papers 2303.11716, arXiv.org.
  65. Damir Filipovi'c & Puneet Pasricha, 2022. "Empirical Asset Pricing via Ensemble Gaussian Process Regression," Papers 2212.01048, arXiv.org, revised Jan 2025.
  66. Liu, Qingbai & Wang, Chuanjie & Zhang, Ping & Zheng, Kaixin, 2021. "Detecting stock market manipulation via machine learning: Evidence from China Securities Regulatory Commission punishment cases," International Review of Financial Analysis, Elsevier, vol. 78(C).
  67. Daniel Poh & Bryan Lim & Stefan Zohren & Stephen Roberts, 2021. "Enhancing Cross-Sectional Currency Strategies by Context-Aware Learning to Rank with Self-Attention," Papers 2105.10019, arXiv.org, revised Jan 2022.
  68. Carter Davis, 2023. "The Elasticity of Quantitative Investment," Papers 2303.14533, arXiv.org, revised Sep 2024.
  69. Ioana Boier, 2022. "Multiresolution Signal Processing of Financial Market Objects," Papers 2210.15934, arXiv.org, revised Nov 2022.
  70. Zhao, Albert Bo & Cheng, Tingting, 2022. "Stock return prediction: Stacking a variety of models," Journal of Empirical Finance, Elsevier, vol. 67(C), pages 288-317.
  71. Caldeira, João F. & Santos, André A.P. & Torrent, Hudson S., 2023. "Semiparametric portfolios: Improving portfolio performance by exploiting non-linearities in firm characteristics," Economic Modelling, Elsevier, vol. 122(C).
  72. Chulwoo Han, 2022. "Bimodal Characteristic Returns and Predictability Enhancement via Machine Learning," Management Science, INFORMS, vol. 68(10), pages 7701-7741, October.
  73. Yilie Huang & Yanwei Jia & Xun Yu Zhou, 2024. "Mean--Variance Portfolio Selection by Continuous-Time Reinforcement Learning: Algorithms, Regret Analysis, and Empirical Study," Papers 2412.16175, arXiv.org.
  74. Byun, Suk-Joon & Cho, Sangheum & Kim, Da-Hea, 2024. "Can a machine learn from behavioral biases? Evidence from stock return predictability of deep learning models," Journal of Behavioral and Experimental Finance, Elsevier, vol. 41(C).
  75. Ping Li & Jiahong Li & Dong Wang, 2024. "Anomaly Identification and Premium Mining: Evidence from Chinese Urban Construction Investment Bonds," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 31(4), pages 945-974, December.
  76. Kazuki Amagai & Tomoya Suzuki, 2023. "Long-Term Modeling of Financial Machine Learning for Active Portfolio Management," Papers 2301.12346, arXiv.org.
  77. Sun, Yang & Zhang, Xuan & Zhang, Zhekai, 2022. "The reduced-rank beta in linear stochastic discount factor models," International Review of Financial Analysis, Elsevier, vol. 84(C).
  78. Guillaume Coqueret, 2022. "Characteristics-driven returns in equilibrium," Papers 2203.07865, arXiv.org.
  79. Hector O. Zapata & Supratik Mukhopadhyay, 2022. "A Bibliometric Analysis of Machine Learning Econometrics in Asset Pricing," JRFM, MDPI, vol. 15(11), pages 1-17, November.
  80. Ajit Desai, 2023. "Machine Learning for Economics Research: When What and How?," Papers 2304.00086, arXiv.org, revised Apr 2023.
  81. Ai He & Guofu Zhou, 2023. "Diagnostics for asset pricing models," Financial Management, Financial Management Association International, vol. 52(4), pages 617-642, December.
  82. Ko, Hyungjin & Son, Bumho & Lee, Jaewook, 2024. "A novel integration of the Fama–French and Black–Litterman models to enhance portfolio management," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 91(C).
  83. Nozomu Kobayashi & Yoshiyuki Suimon & Koichi Miyamoto & Kosuke Mitarai, 2023. "The cross-sectional stock return predictions via quantum neural network and tensor network," Papers 2304.12501, arXiv.org, revised Feb 2024.
  84. Wolfgang Drobetz & Tizian Otto, 2021. "Empirical asset pricing via machine learning: evidence from the European stock market," Journal of Asset Management, Palgrave Macmillan, vol. 22(7), pages 507-538, December.
  85. De Nard, Gianluca & Zhao, Zhao, 2023. "Using, taming or avoiding the factor zoo? A double-shrinkage estimator for covariance matrices," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 23-35.
  86. Doron Avramov & Si Cheng & Lior Metzker, 2023. "Machine Learning vs. Economic Restrictions: Evidence from Stock Return Predictability," Management Science, INFORMS, vol. 69(5), pages 2587-2619, May.
  87. Qianli Zhao & Chao Wang & Richard Gerlach & Giuseppe Storti & Lingxiang Zhang, 2024. "Autoencoder Enhanced Realised GARCH on Volatility Forecasting," Papers 2411.17136, arXiv.org.
  88. Uddin, Ajim & Tao, Xinyuan & Yu, Dantong, 2023. "Attention based dynamic graph neural network for asset pricing," Global Finance Journal, Elsevier, vol. 58(C).
  89. Matteo Bagnara, 2024. "Asset Pricing and Machine Learning: A critical review," Journal of Economic Surveys, Wiley Blackwell, vol. 38(1), pages 27-56, February.
  90. Haixiang Yao & Shenghao Xia & Hao Liu, 2024. "Return predictability via an long short‐term memory‐based cross‐section factor model: Evidence from Chinese stock market," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 1770-1794, September.
  91. Moses Tunde Oyerinde & Folake Feyisayo Olowokudejo & Musa Adebayo Obalola, 2024. "Assets and Liabilities Management: A Determinant of Financial Performance of Pension Funds Administrators (PFAs)," Economics and Applied Informatics, "Dunarea de Jos" University of Galati, Faculty of Economics and Business Administration, issue 3, pages 46-54.
  92. Xiao, Xiang & Hua, Xia & Qin, Kexin, 2024. "A self-attention based cross-sectional return forecasting model with evidence from the Chinese market," Finance Research Letters, Elsevier, vol. 62(PA).
  93. Mathieu Fournier & Kris Jacobs & Piotr Orłowski, 2024. "Modeling Conditional Factor Risk Premia Implied by Index Option Returns," Journal of Finance, American Finance Association, vol. 79(3), pages 2289-2338, June.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.