Higher-order Expansions and Inference for Panel Data Models
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Jiti Gao & Bin Peng & Yayi Yan, 2023. "Higher-order Expansions and Inference for Panel Data Models," Monash Econometrics and Business Statistics Working Papers 15/23, Monash University, Department of Econometrics and Business Statistics.
References listed on IDEAS
- Su, Liangjun & Jin, Sainan & Zhang, Yonghui, 2015.
"Specification test for panel data models with interactive fixed effects,"
Journal of Econometrics, Elsevier, vol. 186(1), pages 222-244.
- Liangjun Su & Sainan Jin & Yonghui Zhang, 2014. "Specification Test for Panel Data Models with Interactive Fixed Effects," Working Papers 08-2014, Singapore Management University, School of Economics.
- Bai, Jushan & Choi, Sung Hoon & Liao, Yuan, 2024.
"Standard errors for panel data models with unknown clusters,"
Journal of Econometrics, Elsevier, vol. 240(2).
- Jushan Bai & Sung Hoon Choi & Yuan Liao, 2019. "Standard Errors for Panel Data Models with Unknown Clusters," Papers 1910.07406, arXiv.org, revised May 2020.
- M. Hashem Pesaran, 2006.
"Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure,"
Econometrica, Econometric Society, vol. 74(4), pages 967-1012, July.
- M. Hashem Pesaran, 2004. "Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure," CESifo Working Paper Series 1331, CESifo.
- Hyungsik Roger Moon & Martin Weidner, 2015.
"Linear Regression for Panel With Unknown Number of Factors as Interactive Fixed Effects,"
Econometrica, Econometric Society, vol. 83(4), pages 1543-1579, July.
- Hyungsik Roger Moon & Martin Weidner, 2013. "Linear regression for panel with unknown number of factors as interactive fixed effects," CeMMAP working papers CWP49/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Hyungsik Roger Moon & Martin Weidner, 2014. "Linear regression for panel with unknown number of factors as interactive fixed effects," CeMMAP working papers CWP35/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Gao, Jiti, 2007. "Nonlinear time series: semiparametric and nonparametric methods," MPRA Paper 39563, University Library of Munich, Germany, revised 01 Sep 2007.
- Chen, Jia & Li, Degui & Linton, Oliver, 2019.
"A new semiparametric estimation approach for large dynamic covariance matrices with multiple conditioning variables,"
Journal of Econometrics, Elsevier, vol. 212(1), pages 155-176.
- Jia Chen & Degui Li & Oliver Linton, 2018. "A New Semiparametric Estimation Approach for Large Dynamic Covariance Matrices with Multiple Conditioning Variables," Discussion Papers 18/14, Department of Economics, University of York.
- Chen, J. & Li, D. & Linton, O., 2018. "A New Semiparametric Estimation Approach for Large Dynamic Covariance Matrices with Multiple Conditioning Variables," Cambridge Working Papers in Economics 1876, Faculty of Economics, University of Cambridge.
- Blake, David & Caulfield, Tristan & Ioannidis, Christos & Tonks, Ian, 2014. "Improved inference in the evaluation of mutual fund performance using panel bootstrap methods," Journal of Econometrics, Elsevier, vol. 183(2), pages 202-210.
- Andrew J. Patton & Kevin Sheppard, 2015. "Good Volatility, Bad Volatility: Signed Jumps and The Persistence of Volatility," The Review of Economics and Statistics, MIT Press, vol. 97(3), pages 683-697, July.
- Chen, Jia & Gao, Jiti & Li, Degui, 2012.
"Semiparametric trending panel data models with cross-sectional dependence,"
Journal of Econometrics, Elsevier, vol. 171(1), pages 71-85.
- Jia Chen & Jiti Gao & Degui Li, 2010. "Semiparametric Trending Panel Data Models with Cross-Sectional Dependence," School of Economics and Public Policy Working Papers 2010-10, University of Adelaide, School of Economics and Public Policy.
- Jia Chen & Jiti Gao & Degui Li, 2011. "Semiparametric Trending Panel Data Models with Cross-Sectional Dependence," Monash Econometrics and Business Statistics Working Papers 15/11, Monash University, Department of Econometrics and Business Statistics.
- Karsten Reichold & Carsten Jentsch, 2022. "A Bootstrap-Assisted Self-Normalization Approach to Inference in Cointegrating Regressions," Papers 2204.01373, arXiv.org.
- Kline Patrick & Santos Andres, 2012.
"A Score Based Approach to Wild Bootstrap Inference,"
Journal of Econometric Methods, De Gruyter, vol. 1(1), pages 23-41, August.
- Patrick M. Kline & Andres Santos, 2010. "A Score Based Approach to Wild Bootstrap Inference," NBER Working Papers 16127, National Bureau of Economic Research, Inc.
- Palm, Franz C. & Smeekes, Stephan & Urbain, Jean-Pierre, 2011.
"Cross-sectional dependence robust block bootstrap panel unit root tests,"
Journal of Econometrics, Elsevier, vol. 163(1), pages 85-104, July.
- Palm, F.C. & Smeekes, S. & Urbain, J.R.Y.J., 2008. "Cross-sectional dependence robust block bootstrap panel unit root tests," Research Memorandum 048, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
- Mitchell A. Petersen, 2009.
"Estimating Standard Errors in Finance Panel Data Sets: Comparing Approaches,"
The Review of Financial Studies, Society for Financial Studies, vol. 22(1), pages 435-480, January.
- Mitchell A. Petersen, 2005. "Estimating Standard Errors in Finance Panel Data Sets: Comparing Approaches," NBER Working Papers 11280, National Bureau of Economic Research, Inc.
- Newey, Whitney & West, Kenneth, 2014.
"A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix,"
Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
- Newey, Whitney K & West, Kenneth D, 1987. "A Simple, Positive Semi-definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix," Econometrica, Econometric Society, vol. 55(3), pages 703-708, May.
- Whitney K. Newey & Kenneth D. West, 1986. "A Simple, Positive Semi-Definite, Heteroskedasticity and AutocorrelationConsistent Covariance Matrix," NBER Technical Working Papers 0055, National Bureau of Economic Research, Inc.
- Nicholas M. Kiefer & Timothy J. Vogelsang, 2002.
"Heteroskedasticity-Autocorrelation Robust Standard Errors Using The Bartlett Kernel Without Truncation,"
Econometrica, Econometric Society, vol. 70(5), pages 2093-2095, September.
- Kiefer, Nicholas M., 2001. "Heteroskedasticity-Autocorrelation Robust Standard Errors Using the Bartlett Kernel without Truncation," Working Papers 01-13, Cornell University, Center for Analytic Economics.
- Gu, Shihao & Kelly, Bryan & Xiu, Dacheng, 2021. "Autoencoder asset pricing models," Journal of Econometrics, Elsevier, vol. 222(1), pages 429-450.
- Shi, Wei & Lee, Lung-fei, 2017. "Spatial dynamic panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 197(2), pages 323-347.
- Manuel Arellano & Stephen Bond, 1991.
"Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations,"
The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(2), pages 277-297.
- Tom Doan, "undated". "RATS program to replicate Arellano-Bond 1991 dynamic panel," Statistical Software Components RTZ00169, Boston College Department of Economics.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Guohua Feng & Jiti Gao & Fei Liu & Bin Peng, 2023.
"Estimation and Inference for Three-Dimensional Panel Data Models,"
Monash Econometrics and Business Statistics Working Papers
20/23, Monash University, Department of Econometrics and Business Statistics.
- Guohua Feng & Jiti Gao & Fei Liu & Bin Peng, 2024. "Estimation and Inference for Three-Dimensional Panel Data Models," Papers 2404.08365, arXiv.org, revised Sep 2024.
- Jiti Gao & Oliver Linton & Bin Peng, 2022. "A Nonparametric Panel Model for Climate Data with Seasonal and Spatial Variation," Monash Econometrics and Business Statistics Working Papers 9/22, Monash University, Department of Econometrics and Business Statistics.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jiti Gao & Bin Peng & Yayi Yan, 2022. "A Simple Bootstrap Method for Panel Data Inferences," Monash Econometrics and Business Statistics Working Papers 7/22, Monash University, Department of Econometrics and Business Statistics.
- Bai, Jushan & Li, Kunpeng, 2021. "Dynamic spatial panel data models with common shocks," Journal of Econometrics, Elsevier, vol. 224(1), pages 134-160.
- Wei Shi & Lung-fei Lee, 2018. "The effects of gun control on crimes: a spatial interactive fixed effects approach," Empirical Economics, Springer, vol. 55(1), pages 233-263, August.
- Daniel Czarnowske & Amrei Stammann, 2020. "Inference in Unbalanced Panel Data Models with Interactive Fixed Effects," Papers 2004.03414, arXiv.org.
- Fei Liu & Jiti Gao & Yanrong Yang, 2019. "Nonparametric Estimation in Panel Data Models with Heterogeneity and Time Varyingness," Monash Econometrics and Business Statistics Working Papers 24/19, Monash University, Department of Econometrics and Business Statistics.
- Jiti Gao & Fei Liu & Bin Peng & Yanrong Yang, 2023. "Localized Neural Network Modelling of Time Series: A Case Study on US Monetary Policy," Papers 2306.05593, arXiv.org, revised Jul 2024.
- Jiang, Bin & Yang, Yanrong & Gao, Jiti & Hsiao, Cheng, 2021.
"Recursive estimation in large panel data models: Theory and practice,"
Journal of Econometrics, Elsevier, vol. 224(2), pages 439-465.
- Bing Jiang & Yanrong Yang & Jiti Gao & Cheng Hsiao, 2017. "Recursive estimation in large panel data models: Theory and practice," Monash Econometrics and Business Statistics Working Papers 5/17, Monash University, Department of Econometrics and Business Statistics.
- Guowei Cui & Vasilis Sarafidis & Takashi Yamagata, 2020. "IV Estimation of Spatial Dynamic Panels with Interactive Effects: Large Sample Theory and an Application on Bank Attitude," Monash Econometrics and Business Statistics Working Papers 11/20, Monash University, Department of Econometrics and Business Statistics.
- Smith, Simon C. & Timmermann, Allan & Zhu, Yinchu, 2019. "Variable selection in panel models with breaks," Journal of Econometrics, Elsevier, vol. 212(1), pages 323-344.
- Shi, Wei & Lee, Lung-fei, 2018. "A spatial panel data model with time varying endogenous weights matrices and common factors," Regional Science and Urban Economics, Elsevier, vol. 72(C), pages 6-34.
- Feng, Guohua & Gao, Jiti & Peng, Bin, 2022.
"An integrated panel data approach to modelling economic growth,"
Journal of Econometrics, Elsevier, vol. 228(2), pages 379-397.
- Guohua Feng & Jiti Gao & Bin Peng, 2019. "An Integrated Panel Data Approach to Modelling Economic Growth," Papers 1903.07948, arXiv.org.
- Dong, Chaohua & Gao, Jiti & Peng, Bin, 2015.
"Semiparametric single-index panel data models with cross-sectional dependence,"
Journal of Econometrics, Elsevier, vol. 188(1), pages 301-312.
- Bin Peng & Chaohua Dong & Jiti Gao, 2014. "Semiparametric Single-Index Panel Data Models with Cross-Sectional Dependence," Monash Econometrics and Business Statistics Working Papers 9/14, Monash University, Department of Econometrics and Business Statistics.
- Vasilis Sarafidis & Tom Wansbeek, 2012.
"Cross-Sectional Dependence in Panel Data Analysis,"
Econometric Reviews, Taylor & Francis Journals, vol. 31(5), pages 483-531, September.
- Sarafidis, Vasilis & Wansbeek, Tom, 2010. "Cross-sectional Dependence in Panel Data Analysis," MPRA Paper 20367, University Library of Munich, Germany.
- Feng, Guohua & Gao, Jiti & Peng, Bin & Zhang, Xiaohui, 2017.
"A varying-coefficient panel data model with fixed effects: Theory and an application to US commercial banks,"
Journal of Econometrics, Elsevier, vol. 196(1), pages 68-82.
- Guohua Feng & Jiti Gao & Bin Peng & Xiaohui Zhang, 2015. "A Varying-Coefficient Panel Data Model with Fixed Effects: Theory and an Application to U.S. Commercial Banks," Monash Econometrics and Business Statistics Working Papers 9/15, Monash University, Department of Econometrics and Business Statistics.
- Jiti Gao & Fei Liu & Bin peng, 2020. "Binary Response Models for Heterogeneous Panel Data with Interactive Fixed Effects," Monash Econometrics and Business Statistics Working Papers 44/20, Monash University, Department of Econometrics and Business Statistics.
- Ye, Xiaoqing & Xu, Juan & Wu, Xiangjun, 2018. "Estimation of an unbalanced panel data Tobit model with interactive effects," Journal of choice modelling, Elsevier, vol. 28(C), pages 108-123.
- Isabel Casas & Jiti Gao & Bin Peng & Shangyu Xie, 2021.
"Timeâvarying income elasticities of healthcare expenditure for the OECD and Eurozone,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(3), pages 328-345, April.
- Isabel Casas & Jiti Gao & Bin Peng & Shangyu Xie, 2019. "Time-Varying Income Elasticities of Healthcare Expenditure for the OECD and Eurozone," Monash Econometrics and Business Statistics Working Papers 28/19, Monash University, Department of Econometrics and Business Statistics.
- Xuan Liang & Jiti Gao & Xiaodong Gong, 2022.
"Semiparametric Spatial Autoregressive Panel Data Model with Fixed Effects and Time-Varying Coefficients,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(4), pages 1784-1802, October.
- Xuan Liang & Jiti Gao & Xiaodong Gong, 2021. "Semiparametric Spatial Autoregressive Panel Data Model with Fixed Effects and Time-Varying Coefficients," Monash Econometrics and Business Statistics Working Papers 5/21, Monash University, Department of Econometrics and Business Statistics.
- Xuan, Liang & Jiti, Gao & xiaodong, Gong, 2021. "Semiparametric Spatial Autoregressive Panel Data Model with Fixed Effects and Time-Varying Coefficients," MPRA Paper 108497, University Library of Munich, Germany, revised 30 May 2021.
- Victor Chernozhukov & Christian Hansen & Yuan Liao & Yinchu Zhu, 2019. "Inference for heterogeneous effects using low-rank estimations," CeMMAP working papers CWP31/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Bai, Jushan, 2024.
"Likelihood approach to dynamic panel models with interactive effects,"
Journal of Econometrics, Elsevier, vol. 240(1).
- Bai, Jushan, 2013. "Likelihood approach to dynamic panel models with interactive effects," MPRA Paper 50267, University Library of Munich, Germany.
More about this item
JEL classification:
- C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
- C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
- E44 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Financial Markets and the Macroeconomy
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2022-06-20 (Econometrics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2205.00577. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.