IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2408.01499.html
   My bibliography  Save this paper

NeuralFactors: A Novel Factor Learning Approach to Generative Modeling of Equities

Author

Listed:
  • Achintya Gopal

Abstract

The use of machine learning for statistical modeling (and thus, generative modeling) has grown in popularity with the proliferation of time series models, text-to-image models, and especially large language models. Fundamentally, the goal of classical factor modeling is statistical modeling of stock returns, and in this work, we explore using deep generative modeling to enhance classical factor models. Prior work has explored the use of deep generative models in order to model hundreds of stocks, leading to accurate risk forecasting and alpha portfolio construction; however, that specific model does not allow for easy factor modeling interpretation in that the factor exposures cannot be deduced. In this work, we introduce NeuralFactors, a novel machine-learning based approach to factor analysis where a neural network outputs factor exposures and factor returns, trained using the same methodology as variational autoencoders. We show that this model outperforms prior approaches both in terms of log-likelihood performance and computational efficiency. Further, we show that this method is competitive to prior work in generating realistic synthetic data, covariance estimation, risk analysis (e.g., value at risk, or VaR, of portfolios), and portfolio optimization. Finally, due to the connection to classical factor analysis, we analyze how the factors our model learns cluster together and show that the factor exposures could be used for embedding stocks.

Suggested Citation

  • Achintya Gopal, 2024. "NeuralFactors: A Novel Factor Learning Approach to Generative Modeling of Equities," Papers 2408.01499, arXiv.org.
  • Handle: RePEc:arx:papers:2408.01499
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2408.01499
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gutierrez, Tomás & Pagnoncelli, Bernardo & Valladão, Davi & Cifuentes, Arturo, 2019. "Can asset allocation limits determine portfolio risk–return profiles in DC pension schemes?," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 134-144.
    2. Fama, Eugene F. & French, Kenneth R., 2015. "A five-factor asset pricing model," Journal of Financial Economics, Elsevier, vol. 116(1), pages 1-22.
    3. Barr Rosenberg and Vinay Marathe., 1976. "Common Factors in Security Returns: Microeconomic Determinants and Macroeconomic Correlates," Research Program in Finance Working Papers 44, University of California at Berkeley.
    4. Magnus Wiese & Robert Knobloch & Ralf Korn & Peter Kretschmer, 2019. "Quant GANs: Deep Generation of Financial Time Series," Papers 1907.06673, arXiv.org, revised Dec 2019.
    5. Hans Buhler & Blanka Horvath & Terry Lyons & Imanol Perez Arribas & Ben Wood, 2020. "A Data-driven Market Simulator for Small Data Environments," Papers 2006.14498, arXiv.org.
    6. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruslan Tepelyan & Achintya Gopal, 2023. "Generative Machine Learning for Multivariate Equity Returns," Papers 2311.14735, arXiv.org.
    2. Kei Nakagawa & Yusuke Uchiyama, 2020. "GO-GJRSK Model with Application to Higher Order Risk-Based Portfolio," Mathematics, MDPI, vol. 8(11), pages 1-12, November.
    3. Bernardi, Mauro & Costola, Michele, 2019. "High-dimensional sparse financial networks through a regularised regression model," SAFE Working Paper Series 244, Leibniz Institute for Financial Research SAFE.
    4. Chen, An-Sing & Chang, Hung-Chou & Cheng, Lee-Young, 2019. "Time-varying Variance Scaling: Application of the Fractionally Integrated ARMA Model," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 1-12.
    5. Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Sep 2023.
    6. Fiorentini, Gabriele & Sentana, Enrique, 2021. "New testing approaches for mean–variance predictability," Journal of Econometrics, Elsevier, vol. 222(1), pages 516-538.
    7. Nicolau, Juan Luis & Sharma, Abhinav, 2022. "A review of research into drivers of firm value through event studies in tourism and hospitality: Launching the Annals of Tourism Research curated collection on drivers of firm value through event stu," Annals of Tourism Research, Elsevier, vol. 95(C).
    8. Yu, Lu & Li, Yanglin, 2023. "Testing factor models when asset bubbles occur: A time-varying perspective," Economic Modelling, Elsevier, vol. 124(C).
    9. Wang, Kai Y.K. & Chen, Cathy W.S. & So, Mike K.P., 2023. "Quantile three-factor model with heteroskedasticity, skewness, and leptokurtosis," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    10. Chen, Xiaoyu & Chiang, Thomas C., 2016. "Stock returns and economic forces—An empirical investigation of Chinese markets," Global Finance Journal, Elsevier, vol. 30(C), pages 45-65.
    11. Ke Zhang, 2023. "Adjust factor with volatility model using MAXFLAT low-pass filter and construct portfolio in China A share market," Papers 2304.04676, arXiv.org, revised Apr 2023.
    12. De Nard, Gianluca & Zhao, Zhao, 2022. "A large-dimensional test for cross-sectional anomalies:Efficient sorting revisited," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 654-676.
    13. Muhammad Surajo Sanusi, 2017. "Investigating the sources of Black’s leverage effect in oil and gas stocks," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1318812-131, January.
    14. Marcos Escobar-Anel & Harold A. Moreno-Franco, 2019. "Dynamic portfolio strategies under a fully correlated jump-diffusion process," Annals of Finance, Springer, vol. 15(3), pages 421-453, September.
    15. Hira Aftab & A. B. M. Rabiul Alam Beg, 2021. "Does Time Varying Risk Premia Exist in the International Bond Market? An Empirical Evidence from Australian and French Bond Market," IJFS, MDPI, vol. 9(1), pages 1-13, January.
    16. Ruili Sun & Tiefeng Ma & Shuangzhe Liu & Milind Sathye, 2019. "Improved Covariance Matrix Estimation for Portfolio Risk Measurement: A Review," JRFM, MDPI, vol. 12(1), pages 1-34, March.
    17. Sebastien Valeyre, 2020. "Refined model of the covariance/correlation matrix between securities," Papers 2001.08911, arXiv.org.
    18. Thampanya, Natthinee & Wu, Junjie & Nasir, Muhammad Ali & Liu, Jia, 2020. "Fundamental and behavioural determinants of stock return volatility in ASEAN-5 countries," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 65(C).
    19. Chuxuan Xiao & Winifred Huang & David P. Newton, 2024. "Predicting expected idiosyncratic volatility: Empirical evidence from ARFIMA, HAR, and EGARCH models," Review of Quantitative Finance and Accounting, Springer, vol. 63(3), pages 979-1006, October.
    20. Shi, Yangyan & Feng, Yu & Zhang, Qi & Shuai, Jing & Niu, Jiangxin, 2023. "Does China's new energy vehicles supply chain stock market have risk spillovers? Evidence from raw material price effect on lithium batteries," Energy, Elsevier, vol. 262(PA).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2408.01499. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.