IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2402.08233.html
   My bibliography  Save this paper

End-to-End Policy Learning of a Statistical Arbitrage Autoencoder Architecture

Author

Listed:
  • Fabian Krause
  • Jan-Peter Calliess

Abstract

In Statistical Arbitrage (StatArb), classical mean reversion trading strategies typically hinge on asset-pricing or PCA based models to identify the mean of a synthetic asset. Once such a (linear) model is identified, a separate mean reversion strategy is then devised to generate a trading signal. With a view of generalising such an approach and turning it truly data-driven, we study the utility of Autoencoder architectures in StatArb. As a first approach, we employ a standard Autoencoder trained on US stock returns to derive trading strategies based on the Ornstein-Uhlenbeck (OU) process. To further enhance this model, we take a policy-learning approach and embed the Autoencoder network into a neural network representation of a space of portfolio trading policies. This integration outputs portfolio allocations directly and is end-to-end trainable by backpropagation of the risk-adjusted returns of the neural policy. Our findings demonstrate that this innovative end-to-end policy learning approach not only simplifies the strategy development process, but also yields superior gross returns over its competitors illustrating the potential of end-to-end training over classical two-stage approaches.

Suggested Citation

  • Fabian Krause & Jan-Peter Calliess, 2024. "End-to-End Policy Learning of a Statistical Arbitrage Autoencoder Architecture," Papers 2402.08233, arXiv.org.
  • Handle: RePEc:arx:papers:2402.08233
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2402.08233
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kelly, Bryan T. & Pruitt, Seth & Su, Yinan, 2019. "Characteristics are covariances: A unified model of risk and return," Journal of Financial Economics, Elsevier, vol. 134(3), pages 501-524.
    2. Stephen A. Ross, 2013. "The Arbitrage Theory of Capital Asset Pricing," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 1, pages 11-30, World Scientific Publishing Co. Pte. Ltd..
    3. Guanhao Feng & Stefano Giglio & Dacheng Xiu, 2020. "Taming the Factor Zoo: A Test of New Factors," Journal of Finance, American Finance Association, vol. 75(3), pages 1327-1370, June.
    4. Evan Gatev & William N. Goetzmann & K. Geert Rouwenhorst, 2006. "Pairs Trading: Performance of a Relative-Value Arbitrage Rule," The Review of Financial Studies, Society for Financial Studies, vol. 19(3), pages 797-827.
    5. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    6. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    7. Christopher Krauss, 2017. "Statistical Arbitrage Pairs Trading Strategies: Review And Outlook," Journal of Economic Surveys, Wiley Blackwell, vol. 31(2), pages 513-545, April.
    8. Gu, Shihao & Kelly, Bryan & Xiu, Dacheng, 2021. "Autoencoder asset pricing models," Journal of Econometrics, Elsevier, vol. 222(1), pages 429-450.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bandi, Federico M. & Chaudhuri, Shomesh E. & Lo, Andrew W. & Tamoni, Andrea, 2021. "Spectral factor models," Journal of Financial Economics, Elsevier, vol. 142(1), pages 214-238.
    2. Constantinos Kardaras & Hyeng Keun Koo & Johannes Ruf, 2022. "Estimation of growth in fund models," Papers 2208.02573, arXiv.org.
    3. Ma, Tian & Leong, Wen Jun & Jiang, Fuwei, 2023. "A latent factor model for the Chinese stock market," International Review of Financial Analysis, Elsevier, vol. 87(C).
    4. Gagliardini, Patrick & Ossola, Elisa & Scaillet, Olivier, 2019. "Estimation of large dimensional conditional factor models in finance," Working Papers unige:125031, University of Geneva, Geneva School of Economics and Management.
    5. De Nard, Gianluca & Zhao, Zhao, 2023. "Using, taming or avoiding the factor zoo? A double-shrinkage estimator for covariance matrices," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 23-35.
    6. Raymond C. W. Leung & Yu-Man Tam, 2021. "Statistical Arbitrage Risk Premium by Machine Learning," Papers 2103.09987, arXiv.org.
    7. Söhnke M. Bartram & Harald Lohre & Peter F. Pope & Ananthalakshmi Ranganathan, 2021. "Navigating the factor zoo around the world: an institutional investor perspective," Journal of Business Economics, Springer, vol. 91(5), pages 655-703, July.
    8. Ai He & Guofu Zhou, 2023. "Diagnostics for asset pricing models," Financial Management, Financial Management Association International, vol. 52(4), pages 617-642, December.
    9. Wolfgang Drobetz & Tizian Otto, 2021. "Empirical asset pricing via machine learning: evidence from the European stock market," Journal of Asset Management, Palgrave Macmillan, vol. 22(7), pages 507-538, December.
    10. Vafai, Nima & Rakowski, David, 2024. "The sources of portfolio volatility and mutual fund performance," International Review of Financial Analysis, Elsevier, vol. 91(C).
    11. Gagliardini, Patrick & Ossola, Elisa & Scaillet, Olivier, 2019. "A diagnostic criterion for approximate factor structure," Journal of Econometrics, Elsevier, vol. 212(2), pages 503-521.
    12. Gu, Shihao & Kelly, Bryan & Xiu, Dacheng, 2021. "Autoencoder asset pricing models," Journal of Econometrics, Elsevier, vol. 222(1), pages 429-450.
    13. Dapeng Li & Feiyang Pan & Jia He & Zhiwei Xu & Dandan Tu & Guoliang Fan, 2023. "Style Miner: Find Significant and Stable Explanatory Factors in Time Series with Constrained Reinforcement Learning," Papers 2303.11716, arXiv.org.
    14. Borup, Daniel, 2019. "Asset pricing model uncertainty," Journal of Empirical Finance, Elsevier, vol. 54(C), pages 166-189.
    15. Alex R. Horenstein, 2021. "The Unintended Impact of Academic Research on Asset Returns: The Capital Asset Pricing Model Alpha," Management Science, INFORMS, vol. 67(6), pages 3655-3673, June.
    16. Fernando Moraes & Rodrigo De-Losso, 2020. "Risk Factor Centrality and the Cross-Section of Expected Returns," Working Papers, Department of Economics 2020_17, University of São Paulo (FEA-USP).
    17. Pedro M. Mirete-Ferrer & Alberto Garcia-Garcia & Juan Samuel Baixauli-Soler & Maria A. Prats, 2022. "A Review on Machine Learning for Asset Management," Risks, MDPI, vol. 10(4), pages 1-46, April.
    18. Uddin, Ajim & Yu, Dantong, 2020. "Latent factor model for asset pricing," Journal of Behavioral and Experimental Finance, Elsevier, vol. 27(C).
    19. Doron Avramov & Si Cheng & Lior Metzker & Stefan Voigt, 2023. "Integrating Factor Models," Journal of Finance, American Finance Association, vol. 78(3), pages 1593-1646, June.
    20. Thomas Conlon & John Cotter & Iason Kynigakis, 2021. "Machine Learning and Factor-Based Portfolio Optimization," Papers 2107.13866, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2402.08233. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.