IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v51y2023ics1544612322005761.html
   My bibliography  Save this article

Robust forecasting with scaled independent component analysis

Author

Listed:
  • Shu, Lei
  • Lu, Feiyang
  • Chen, Yu

Abstract

Independent component analysis (ICA) is a method to find potential components from high-dimensional data. In this paper, a scaled independent component analysis (sICA) method is proposed for finding factors with more predictive power. The core idea is to improve the predictive effect of the model by giving more weight to those variables with stronger predictive power before estimating the independent components. Specifically, a one-dimensional linear regression is constructed for each covariate and target variable, where the regression coefficient measures the magnitude of the effect of the predictor variable on the target variable, and we use this regression coefficient to scale the corresponding predictor variable. Finally, we apply our method to study the data from the Federal Reserve Monthly Database for Economic Research (FRED-MD) which is a large macroeconomic database. The results of the data analysis show that, in general, the sICA method has better forecasting performance.

Suggested Citation

  • Shu, Lei & Lu, Feiyang & Chen, Yu, 2023. "Robust forecasting with scaled independent component analysis," Finance Research Letters, Elsevier, vol. 51(C).
  • Handle: RePEc:eee:finlet:v:51:y:2023:i:c:s1544612322005761
    DOI: 10.1016/j.frl.2022.103399
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612322005761
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2022.103399?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    2. Michael W. McCracken & Serena Ng, 2016. "FRED-MD: A Monthly Database for Macroeconomic Research," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 574-589, October.
    3. He, Mengxi & Zhang, Yaojie & Wen, Danyan & Wang, Yudong, 2021. "Forecasting crude oil prices: A scaled PCA approach," Energy Economics, Elsevier, vol. 97(C).
    4. Seung C. Ahn & Alex R. Horenstein, 2013. "Eigenvalue Ratio Test for the Number of Factors," Econometrica, Econometric Society, vol. 81(3), pages 1203-1227, May.
    5. Campbell, John Y. & Lo, Andrew W. & MacKinlay, A. Craig & Whitelaw, Robert F., 1998. "The Econometrics Of Financial Markets," Macroeconomic Dynamics, Cambridge University Press, vol. 2(4), pages 559-562, December.
    6. Bai, Jushan & Ng, Serena, 2008. "Forecasting economic time series using targeted predictors," Journal of Econometrics, Elsevier, vol. 146(2), pages 304-317, October.
    7. Salisu, Afees A. & Tchankam, Jean Paul, 2022. "US Stock return predictability with high dimensional models," Finance Research Letters, Elsevier, vol. 45(C).
    8. Gu, Shihao & Kelly, Bryan & Xiu, Dacheng, 2021. "Autoencoder asset pricing models," Journal of Econometrics, Elsevier, vol. 222(1), pages 429-450.
    9. István Ábel & Pierre L. Siklos & István P. Székely, 1998. "Money and Finance in the Transition to a Market Economy," Books, Edward Elgar Publishing, number 830.
    10. Jushan Bai & Serena Ng, 2006. "Confidence Intervals for Diffusion Index Forecasts and Inference for Factor-Augmented Regressions," Econometrica, Econometric Society, vol. 74(4), pages 1133-1150, July.
    11. Kelly, Bryan & Pruitt, Seth, 2015. "The three-pass regression filter: A new approach to forecasting using many predictors," Journal of Econometrics, Elsevier, vol. 186(2), pages 294-316.
    12. Hitaj, Asmerilda & Mercuri, Lorenzo & Rroji, Edit, 2015. "Portfolio selection with independent component analysis," Finance Research Letters, Elsevier, vol. 15(C), pages 146-159.
    13. Fan, Liwei & Pan, Sijia & Li, Zimin & Li, Huiping, 2016. "An ICA-based support vector regression scheme for forecasting crude oil prices," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 245-253.
    14. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fang, Puyi & Gao, Zhaoxing & Tsay, Ruey S., 2023. "Supervised kernel principal component analysis for forecasting," Finance Research Letters, Elsevier, vol. 58(PA).
    2. Xi, Haomeng & Wang, Jizhou, 2024. "Social governance, family happiness, and financial inclusion," Finance Research Letters, Elsevier, vol. 61(C).
    3. Zhang, Hao & Zhu, Yimeng, 2024. "Financial knowledge, executive decision making and enterprise innovation," Finance Research Letters, Elsevier, vol. 61(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dashan Huang & Fuwei Jiang & Kunpeng Li & Guoshi Tong & Guofu Zhou, 2022. "Scaled PCA: A New Approach to Dimension Reduction," Management Science, INFORMS, vol. 68(3), pages 1678-1695, March.
    2. Chen, Qitong & Hong, Yongmiao & Li, Haiqi, 2024. "Time-varying forecast combination for factor-augmented regressions with smooth structural changes," Journal of Econometrics, Elsevier, vol. 240(1).
    3. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers 2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    4. Zhaoxing Gao & Ruey S. Tsay, 2023. "Supervised Dynamic PCA: Linear Dynamic Forecasting with Many Predictors," Papers 2307.07689, arXiv.org.
    5. Smeekes, Stephan & Wijler, Etienne, 2018. "Macroeconomic forecasting using penalized regression methods," International Journal of Forecasting, Elsevier, vol. 34(3), pages 408-430.
    6. Olivier Fortin‐Gagnon & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "A large Canadian database for macroeconomic analysis," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 55(4), pages 1799-1833, November.
    7. Barbarino, Alessandro & Bura, Efstathia, 2024. "Forecasting Near-equivalence of Linear Dimension Reduction Methods in Large Panels of Macro-variables," Econometrics and Statistics, Elsevier, vol. 31(C), pages 1-18.
    8. Yuan Liao & Xinjie Ma & Andreas Neuhierl & Zhentao Shi, 2023. "Economic Forecasts Using Many Noises," Papers 2312.05593, arXiv.org, revised Dec 2023.
    9. Pierre Guérin & Danilo Leiva-Leon & Massimiliano Marcellino, 2020. "Markov-Switching Three-Pass Regression Filter," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 285-302, April.
    10. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    11. Kelly, Bryan & Pruitt, Seth, 2015. "The three-pass regression filter: A new approach to forecasting using many predictors," Journal of Econometrics, Elsevier, vol. 186(2), pages 294-316.
    12. Vigo Pereira, Caio, 2021. "Portfolio efficiency with high-dimensional data as conditioning information," International Review of Financial Analysis, Elsevier, vol. 77(C).
    13. Giglio, Stefano & Kelly, Bryan & Pruitt, Seth, 2016. "Systemic risk and the macroeconomy: An empirical evaluation," Journal of Financial Economics, Elsevier, vol. 119(3), pages 457-471.
    14. Demetrescu, Matei & Hacıoğlu Hoke, Sinem, 2019. "Predictive regressions under asymmetric loss: Factor augmentation and model selection," International Journal of Forecasting, Elsevier, vol. 35(1), pages 80-99.
    15. Yunjung Kim & Cheolbeom Park, 2020. "Are exchange rates disconnected from macroeconomic variables? Evidence from the factor approach," Empirical Economics, Springer, vol. 58(4), pages 1713-1747, April.
    16. Zhang, Yaojie & Wahab, M.I.M. & Wang, Yudong, 2023. "Forecasting crude oil market volatility using variable selection and common factor," International Journal of Forecasting, Elsevier, vol. 39(1), pages 486-502.
    17. Rajveer Jat & Daanish Padha, 2024. "Kernel Three Pass Regression Filter," Papers 2405.07292, arXiv.org, revised Jun 2024.
    18. Liang Chen & Juan J. Dolado & Jesús Gonzalo, 2021. "Quantile Factor Models," Econometrica, Econometric Society, vol. 89(2), pages 875-910, March.
    19. Philipp Gersing & Christoph Rust & Manfred Deistler, 2023. "Weak Factors are Everywhere," Papers 2307.10067, arXiv.org, revised Jan 2024.
    20. Ardia, David & Bluteau, Keven & Boudt, Kris, 2019. "Questioning the news about economic growth: Sparse forecasting using thousands of news-based sentiment values," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1370-1386.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:51:y:2023:i:c:s1544612322005761. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.