IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2303.11716.html
   My bibliography  Save this paper

Style Miner: Find Significant and Stable Explanatory Factors in Time Series with Constrained Reinforcement Learning

Author

Listed:
  • Dapeng Li
  • Feiyang Pan
  • Jia He
  • Zhiwei Xu
  • Dandan Tu
  • Guoliang Fan

Abstract

In high-dimensional time-series analysis, it is essential to have a set of key factors (namely, the style factors) that explain the change of the observed variable. For example, volatility modeling in finance relies on a set of risk factors, and climate change studies in climatology rely on a set of causal factors. The ideal low-dimensional style factors should balance significance (with high explanatory power) and stability (consistent, no significant fluctuations). However, previous supervised and unsupervised feature extraction methods can hardly address the tradeoff. In this paper, we propose Style Miner, a reinforcement learning method to generate style factors. We first formulate the problem as a Constrained Markov Decision Process with explanatory power as the return and stability as the constraint. Then, we design fine-grained immediate rewards and costs and use a Lagrangian heuristic to balance them adaptively. Experiments on real-world financial data sets show that Style Miner outperforms existing learning-based methods by a large margin and achieves a relatively 10% gain in R-squared explanatory power compared to the industry-renowned factors proposed by human experts.

Suggested Citation

  • Dapeng Li & Feiyang Pan & Jia He & Zhiwei Xu & Dandan Tu & Guoliang Fan, 2023. "Style Miner: Find Significant and Stable Explanatory Factors in Time Series with Constrained Reinforcement Learning," Papers 2303.11716, arXiv.org.
  • Handle: RePEc:arx:papers:2303.11716
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2303.11716
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kelly, Bryan T. & Pruitt, Seth & Su, Yinan, 2019. "Characteristics are covariances: A unified model of risk and return," Journal of Financial Economics, Elsevier, vol. 134(3), pages 501-524.
    2. Gabriele Hegerl & Francis Zwiers, 2011. "Use of models in detection and attribution of climate change," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 2(4), pages 570-591, July.
    3. Barr Rosenberg and James Guy., 1975. "The Prediction of Systematic Risk," Research Program in Finance Working Papers 33, University of California at Berkeley.
    4. Eugene F Fama & Kenneth R French & Andrew KarolyiEditor, 2020. "Comparing Cross-Section and Time-Series Factor Models," Review of Finance, European Finance Association, vol. 33(5), pages 1891-1926.
    5. Fama, Eugene F & MacBeth, James D, 1973. "Risk, Return, and Equilibrium: Empirical Tests," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 607-636, May-June.
    6. Eugene F Fama & Kenneth R French, 2020. "Comparing Cross-Section and Time-Series Factor Models," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 1891-1926.
    7. Gu, Shihao & Kelly, Bryan & Xiu, Dacheng, 2021. "Autoencoder asset pricing models," Journal of Econometrics, Elsevier, vol. 222(1), pages 429-450.
    8. Hengxu Lin & Dong Zhou & Weiqing Liu & Jiang Bian, 2021. "Deep Risk Model: A Deep Learning Solution for Mining Latent Risk Factors to Improve Covariance Matrix Estimation," Papers 2107.05201, arXiv.org, revised Oct 2021.
    9. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    10. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    11. Feiyang Pan & Tongzhe Zhang & Ling Luo & Jia He & Shuoling Liu, 2022. "Learn Continuously, Act Discretely: Hybrid Action-Space Reinforcement Learning For Optimal Execution," Papers 2207.11152, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lioui, Abraham & Tarelli, Andrea, 2022. "Chasing the ESG factor," Journal of Banking & Finance, Elsevier, vol. 139(C).
    2. James W. Kolari & Jianhua Z. Huang & Wei Liu & Huiling Liao, 2022. "Further Tests of the ZCAPM Asset Pricing Model," JRFM, MDPI, vol. 15(3), pages 1-23, March.
    3. Wolfgang Drobetz & Tizian Otto, 2021. "Empirical asset pricing via machine learning: evidence from the European stock market," Journal of Asset Management, Palgrave Macmillan, vol. 22(7), pages 507-538, December.
    4. Kolari, James W. & Huang, Jianhua Z. & Butt, Hilal Anwar & Liao, Huiling, 2022. "International tests of the ZCAPM asset pricing model," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 79(C).
    5. Huei-Wen Teng & Yu-Hsien Li, 2023. "Can deep neural networks outperform Fama-MacBeth regression and other supervised learning approaches in stock returns prediction with asset-pricing factors?," Digital Finance, Springer, vol. 5(1), pages 149-182, March.
    6. Guillaume Coqueret, 2022. "Characteristics-driven returns in equilibrium," Papers 2203.07865, arXiv.org.
    7. Allen, David, 2022. "Asset Pricing Tests, Endogeneity issues and Fama-French factors," MPRA Paper 113610, University Library of Munich, Germany.
    8. Damir Filipovic & Paul Schneider, 2024. "Fundamental properties of linear factor models," Papers 2409.02521, arXiv.org, revised Oct 2024.
    9. Doron Avramov & Si Cheng & Lior Metzker, 2023. "Machine Learning vs. Economic Restrictions: Evidence from Stock Return Predictability," Management Science, INFORMS, vol. 69(5), pages 2587-2619, May.
    10. Xiao, Xiang & Hua, Xia & Qin, Kexin, 2024. "A self-attention based cross-sectional return forecasting model with evidence from the Chinese market," Finance Research Letters, Elsevier, vol. 62(PA).
    11. Bandi, Federico M. & Chaudhuri, Shomesh E. & Lo, Andrew W. & Tamoni, Andrea, 2021. "Spectral factor models," Journal of Financial Economics, Elsevier, vol. 142(1), pages 214-238.
    12. Cakici, Nusret & Fieberg, Christian & Metko, Daniel & Zaremba, Adam, 2023. "Machine learning goes global: Cross-sectional return predictability in international stock markets," Journal of Economic Dynamics and Control, Elsevier, vol. 155(C).
    13. Constantinos Kardaras & Hyeng Keun Koo & Johannes Ruf, 2022. "Estimation of growth in fund models," Papers 2208.02573, arXiv.org.
    14. Skočir, Matevž & Lončarski, Igor, 2024. "On the importance of asset pricing factors in the relative valuation," Research in International Business and Finance, Elsevier, vol. 70(PB).
    15. Pedro M. Mirete-Ferrer & Alberto Garcia-Garcia & Juan Samuel Baixauli-Soler & Maria A. Prats, 2022. "A Review on Machine Learning for Asset Management," Risks, MDPI, vol. 10(4), pages 1-46, April.
    16. Hoang, Khoa & Huang, Ronghong & Truong, Helen, 2023. "Resurrecting the market factor: A case of data mining across international markets," Pacific-Basin Finance Journal, Elsevier, vol. 82(C).
    17. Ma, Tian & Leong, Wen Jun & Jiang, Fuwei, 2023. "A latent factor model for the Chinese stock market," International Review of Financial Analysis, Elsevier, vol. 87(C).
    18. Fabian Krause & Jan-Peter Calliess, 2024. "End-to-End Policy Learning of a Statistical Arbitrage Autoencoder Architecture," Papers 2402.08233, arXiv.org.
    19. Harvey, Campbell R. & Liu, Yan, 2021. "Lucky factors," Journal of Financial Economics, Elsevier, vol. 141(2), pages 413-435.
    20. Cisil Sarisoy & Bas J.M. Werker, 2024. "Linear Factor Models and the Estimation of Expected Returns," Finance and Economics Discussion Series 2024-014, Board of Governors of the Federal Reserve System (U.S.).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2303.11716. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.