Forecasting nonperforming loans using machine learning
Author
Abstract
Suggested Citation
DOI: 10.1002/for.2977
Download full text from publisher
References listed on IDEAS
- Oguzhan Cepni & Riza Demirer & Rangan Gupta & Ahmet Sensoy, 2022.
"Interest rate uncertainty and the predictability of bank revenues,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(8), pages 1559-1569, December.
- Oguzhan Cepni & Riza Demirer & Rangan Gupta & Ahmet Sensoy, 2020. "Interest Rate Uncertainty and the Predictability of Bank Revenues," Working Papers 202040, University of Pretoria, Department of Economics.
- Cepni, Oguzhan & Demirer, Riza & Gupta, Rangan & Sensoy, Ahmet, 2021. "Interest Rate Uncertainty and the Predictability of Bank Revenues," Working Papers 2-2021, Copenhagen Business School, Department of Economics.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Finance, European Finance Association, vol. 33(5), pages 2223-2273.
- Oguzhan Cepni & Rangan Gupta & Yigit Onay, 2022.
"The role of investor sentiment in forecasting housing returns in China: A machine learning approach,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(8), pages 1725-1740, December.
- Oguzhan Cepni & Rangan Gupta & Yigit Onay, 2020. "The Role of Investor Sentiment in Forecasting Housing Returns in China: A Machine Learning Approach," Working Papers 202055, University of Pretoria, Department of Economics.
- repec:eme:mfppss:mf-12-2017-0520 is not listed on IDEAS
- Podpiera, Jiri & Weill, Laurent, 2008.
"Bad luck or bad management? Emerging banking market experience,"
Journal of Financial Stability, Elsevier, vol. 4(2), pages 135-148, June.
- Jiri Podpiera & Laurent Weill, 2007. "Bad Luck or Bad Management? Emerging Banking Market Experience," Working Papers 2007/5, Czech National Bank.
- Jirí Podpiera & Laurent Weill, 2008. "Bad luck or bad management? emerging banking market experience," ULB Institutional Repository 2013/14305, ULB -- Universite Libre de Bruxelles.
- Archer, Kellie J. & Kimes, Ryan V., 2008. "Empirical characterization of random forest variable importance measures," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 2249-2260, January.
- Onder Ozgur & Erdal Tanas Karagol & Fatih Cemil Ozbugday, 2021. "Machine learning approach to drivers of bank lending: evidence from an emerging economy," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-29, December.
- Vasilios Plakandaras & Theophilos Papadimitriou & Periklis Gogas, 2015.
"Forecasting Daily and Monthly Exchange Rates with Machine Learning Techniques,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(7), pages 560-573, November.
- Papadimitriou, Theophilos & Gogas, Periklis & Plakandaras, Vasilios, 2013. "Forecasting daily and monthly exchange rates with machine learning techniques," DUTH Research Papers in Economics 3-2013, Democritus University of Thrace, Department of Economics, revised 07 Apr 2015.
- Bonato, Matteo & Cepni, Oguzhan & Gupta, Rangan & Pierdzioch, Christian, 2023.
"Climate risks and realized volatility of major commodity currency exchange rates,"
Journal of Financial Markets, Elsevier, vol. 62(C).
- Matteo Bonato & Oguzhan Cepni & Rangan Gupta & Christian Pierdzioch, 2022. "Climate Risks and Realized Volatility of Major Commodity Currency Exchange Rates," Working Papers 202210, University of Pretoria, Department of Economics.
- Berger, Allen N. & DeYoung, Robert, 1997.
"Problem loans and cost efficiency in commercial banks,"
Journal of Banking & Finance, Elsevier, vol. 21(6), pages 849-870, June.
- Allen N. Berger & Robert DeYoung, "undated". "Problem Loans and Cost Efficiency in Commercial Banks," Finance and Economics Discussion Series 1997-08, Board of Governors of the Federal Reserve System (U.S.), revised 10 Dec 2019.
- Allen N. Berger & Robert DeYoung, 1997. "Problem loans and cost efficiency in commercial banks," Finance and Economics Discussion Series 1997-8, Board of Governors of the Federal Reserve System (U.S.).
- Allen N. Berger & Robert DeYoung, 1996. "Problem loans and cost efficiency in commercial banks," Proceedings 505, Federal Reserve Bank of Chicago.
- Allen N. Berger & Robert DeYoung, 1995. "Problem Loans and Cost Efficiency in Commercial Banks," Center for Financial Institutions Working Papers 96-01, Wharton School Center for Financial Institutions, University of Pennsylvania.
- Nurfilzah Arham & Mohd Shamlie Salisi & Rozita Uji Mohammed & Jasman Tuyon, 2020. "Impact of macroeconomic cyclical indicators and country governance on bank non-performing loans in Emerging Asia," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 10(4), pages 707-726, December.
- Usman Bashir & Yugang Yu & Muntazir Hussain & Xiao Wang & Ahmed Ali, 2017. "Do banking system transparency and competition affect nonperforming loans in the Chinese banking sector?," Applied Economics Letters, Taylor & Francis Journals, vol. 24(21), pages 1519-1525, December.
- Khemaies Bougatef, 2015. "The impact of corruption on the soundness of Islamic banks," Borsa Istanbul Review, Research and Business Development Department, Borsa Istanbul, vol. 15(4), pages 283-295, December.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016.
"Measuring Economic Policy Uncertainty,"
The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2015. "Measuring Economic Policy Uncertainty," Economics Working Papers 15111, Hoover Institution, Stanford University.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2015. "Measuring Economic Policy Uncertainty," NBER Working Papers 21633, National Bureau of Economic Research, Inc.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2015. "Measuring Economic Policy Uncertainty," CEP Discussion Papers dp1379, Centre for Economic Performance, LSE.
- Baker, Scott R. & Bloom, Nicholas & Davis, Steven J., 2015. "Measuring economic policy uncertainty," LSE Research Online Documents on Economics 64986, London School of Economics and Political Science, LSE Library.
- Davis, Steven & Bloom, Nicholas & Baker, Scott, 2015. "Measuring Economic Policy Uncertainty," CEPR Discussion Papers 10900, C.E.P.R. Discussion Papers.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020.
"Empirical Asset Pricing via Machine Learning,"
The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2018. "Empirical Asset Pricing via Machine Learning," NBER Working Papers 25398, National Bureau of Economic Research, Inc.
- Shihao Gu & Bryan T. Kelly & Dacheng Xiu, 2018. "Empirical Asset Pricing via Machine Learning," Swiss Finance Institute Research Paper Series 18-71, Swiss Finance Institute.
- Gu, Shihao & Kelly, Bryan & Xiu, Dacheng, 2021. "Autoencoder asset pricing models," Journal of Econometrics, Elsevier, vol. 222(1), pages 429-450.
- Ajim Uddin & Xinyuan Tao & Chia-Ching Chou & Dantong Yu, 2022. "Are missing values important for earnings forecasts? A machine learning perspective," Quantitative Finance, Taylor & Francis Journals, vol. 22(6), pages 1113-1132, June.
- Xiaobo Tang & Shixuan Li & Mingliang Tan & Wenxuan Shi, 2020. "Incorporating textual and management factors into financial distress prediction: A comparative study of machine learning methods," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(5), pages 769-787, August.
- Xin‐Ping Song & Zhi‐Hua Hu & Jian‐Guo Du & Zhao‐Han Sheng, 2014. "Application of Machine Learning Methods to Risk Assessment of Financial Statement Fraud: Evidence from China," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(8), pages 611-626, December.
- Cepni, Oguzhan & Güney, I. Ethem & Swanson, Norman R., 2019. "Nowcasting and forecasting GDP in emerging markets using global financial and macroeconomic diffusion indexes," International Journal of Forecasting, Elsevier, vol. 35(2), pages 555-572.
- Lanbiao Liu & Chen Chen & Bo Wang, 2022. "Predicting financial crises with machine learning methods," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(5), pages 871-910, August.
- Marco Marozzi, 2009. "Some notes on the location–scale Cucconi test," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(5), pages 629-647.
- Çepni, Oğuzhan & Gupta, Rangan & Pienaar, Daniel & Pierdzioch, Christian, 2022.
"Forecasting the realized variance of oil-price returns using machine learning: Is there a role for U.S. state-level uncertainty?,"
Energy Economics, Elsevier, vol. 114(C).
- Oguzhan Cepni & Rangan Gupta & Daniel Pienaar & Christian Pierdzioch, 2022. "Forecasting the Realized Variance of Oil-Price Returns Using Machine-Learning: Is there a Role for U.S. State-Level Uncertainty?," Working Papers 202205, University of Pretoria, Department of Economics.
- Gallagher, Colin, 2007. "Extending the Linear Model With R: Generalized Linear, Mixed Effects and Nonparametric Regression Models. Julian J. Faraway," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1477-1477, December.
- Florian Manz, 2019. "Determinants of non-performing loans: What do we know? A systematic review and avenues for future research," Management Review Quarterly, Springer, vol. 69(4), pages 351-389, November.
- Marsaglia, George & Tsang, Wai Wan & Wang, Jingbo, 2003. "Evaluating Kolmogorov's Distribution," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 8(i18).
- Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
- Ghosh, Amit, 2015. "Banking-industry specific and regional economic determinants of non-performing loans: Evidence from US states," Journal of Financial Stability, Elsevier, vol. 20(C), pages 93-104.
- Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
- Ashraf, Badar Nadeem & Shen, Yinjie, 2019. "Economic policy uncertainty and banks’ loan pricing," Journal of Financial Stability, Elsevier, vol. 44(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Baumöhl, Eduard & Lyócsa, Štefan & Vašaničová, Petra, 2024. "Macroeconomic environment and the future performance of loans: Evidence from three peer-to-peer platforms," International Review of Financial Analysis, Elsevier, vol. 95(PB).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xue Gong & Weiguo Zhang & Yuan Zhao & Xin Ye, 2023. "Forecasting stock volatility with a large set of predictors: A new forecast combination method," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1622-1647, November.
- Wen, Danyan & He, Mengxi & Wang, Yudong & Zhang, Yaojie, 2024. "Forecasting crude oil market volatility: A comprehensive look at uncertainty variables," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1022-1041.
- Kim Christensen & Mathias Siggaard & Bezirgen Veliyev, 2023.
"A Machine Learning Approach to Volatility Forecasting,"
Journal of Financial Econometrics, Oxford University Press, vol. 21(5), pages 1680-1727.
- Kim Christensen & Mathias Siggaard & Bezirgen Veliyev, 2021. "A machine learning approach to volatility forecasting," CREATES Research Papers 2021-03, Department of Economics and Business Economics, Aarhus University.
- Matteo Bagnara, 2024. "Asset Pricing and Machine Learning: A critical review," Journal of Economic Surveys, Wiley Blackwell, vol. 38(1), pages 27-56, February.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Li, Zhao-Chen & Xie, Chi & Wang, Gang-Jin & Zhu, You & Zeng, Zhi-Jian & Gong, Jue, 2024. "Forecasting global stock market volatilities: A shrinkage heterogeneous autoregressive (HAR) model with a large cross-market predictor set," International Review of Economics & Finance, Elsevier, vol. 93(PB), pages 673-711.
- Pan, Zhiyuan & Zhong, Hao & Wang, Yudong & Huang, Juan, 2024. "Forecasting oil futures returns with news," Energy Economics, Elsevier, vol. 134(C).
- Gong, Xue & Ye, Xin & Zhang, Weiguo & Zhang, Yue, 2023. "Predicting energy futures high-frequency volatility using technical indicators: The role of interaction," Energy Economics, Elsevier, vol. 119(C).
- Huei-Wen Teng & Yu-Hsien Li, 2023. "Can deep neural networks outperform Fama-MacBeth regression and other supervised learning approaches in stock returns prediction with asset-pricing factors?," Digital Finance, Springer, vol. 5(1), pages 149-182, March.
- Jia, Yuecheng & Wu, Yangru & Yan, Shu & Liu, Yuzheng, 2023. "A seesaw effect in the cryptocurrency market: Understanding the return cross predictability of cryptocurrencies," Journal of Empirical Finance, Elsevier, vol. 74(C).
- Freire, Gustavo, 2021. "Tail risk and investors’ concerns: Evidence from Brazil," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
- Cakici, Nusret & Shahzad, Syed Jawad Hussain & Będowska-Sójka, Barbara & Zaremba, Adam, 2024. "Machine learning and the cross-section of cryptocurrency returns," International Review of Financial Analysis, Elsevier, vol. 94(C).
- Hoang, Daniel & Wiegratz, Kevin, 2022. "Machine learning methods in finance: Recent applications and prospects," Working Paper Series in Economics 158, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
- Díaz, Juan D. & Hansen, Erwin & Cabrera, Gabriel, 2023. "Gold risk premium estimation with machine learning methods," Journal of Commodity Markets, Elsevier, vol. 31(C).
- Díaz, Juan D. & Hansen, Erwin & Cabrera, Gabriel, 2024. "Machine-learning stock market volatility: Predictability, drivers, and economic value," International Review of Financial Analysis, Elsevier, vol. 94(C).
- Zhu, Haibin & Bai, Lu & He, Lidan & Liu, Zhi, 2023. "Forecasting realized volatility with machine learning: Panel data perspective," Journal of Empirical Finance, Elsevier, vol. 73(C), pages 251-271.
- Borup, Daniel & Christensen, Bent Jesper & Mühlbach, Nicolaj Søndergaard & Nielsen, Mikkel Slot, 2023.
"Targeting predictors in random forest regression,"
International Journal of Forecasting, Elsevier, vol. 39(2), pages 841-868.
- Daniel Borup & Bent Jesper Christensen & Nicolaj N{o}rgaard Muhlbach & Mikkel Slot Nielsen, 2020. "Targeting predictors in random forest regression," Papers 2004.01411, arXiv.org, revised Nov 2020.
- Daniel Borup & Bent Jesper Christensen & Nicolaj N. Mühlbach & Mikkel S. Nielsen, 2020. "Targeting predictors in random forest regression," CREATES Research Papers 2020-03, Department of Economics and Business Economics, Aarhus University.
- Daniel Borup & Philippe Goulet Coulombe & Erik Christian Montes Schütte & David E. Rapach & Sander Schwenk-Nebbe, 2022.
"The Anatomy of Out-of-Sample Forecasting Accuracy,"
FRB Atlanta Working Paper
2022-16, Federal Reserve Bank of Atlanta.
- Daniel Borup & Philippe Goulet Coulombe & Erik Christian Montes Schütte & David E. Rapach & Sander Schwenk-Nebbe, 2024. "The Anatomy of Out-of-Sample Forecasting Accuracy," FRB Atlanta Working Paper 2022-16b, Federal Reserve Bank of Atlanta.
- Lee, Ji Hyung & Shi, Zhentao & Gao, Zhan, 2022.
"On LASSO for predictive regression,"
Journal of Econometrics, Elsevier, vol. 229(2), pages 322-349.
- Ji Hyung Lee & Zhentao Shi & Zhan Gao, 2018. "On LASSO for Predictive Regression," Papers 1810.03140, arXiv.org, revised Feb 2021.
- DeMiguel, Victor & Gil-Bazo, Javier & Nogales, Francisco J. & Santos, André A.P., 2023. "Machine learning and fund characteristics help to select mutual funds with positive alpha," Journal of Financial Economics, Elsevier, vol. 150(3).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:42:y:2023:i:7:p:1664-1689. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.