IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v141y2015icp190-199.html
   My bibliography  Save this item

A clustering approach to domestic electricity load profile characterisation using smart metering data

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Sun, Mei & Li, Juan & Gao, Cuixia & Han, Dun, 2017. "Identifying regime shifts in the US electricity market based on price fluctuations," Applied Energy, Elsevier, vol. 194(C), pages 658-666.
  2. Li, Wenqiang & Gong, Guangcai & Fan, Houhua & Peng, Pei & Chun, Liang & Fang, Xi, 2021. "A clustering-based approach for “cross-scale” load prediction on building level in HVAC systems," Applied Energy, Elsevier, vol. 282(PB).
  3. Jacqueline Nicole Adams & Zsófia Deme Bélafi & Miklós Horváth & János Balázs Kocsis & Tamás Csoknyai, 2021. "How Smart Meter Data Analysis Can Support Understanding the Impact of Occupant Behavior on Building Energy Performance: A Comprehensive Review," Energies, MDPI, vol. 14(9), pages 1-23, April.
  4. Wang, Chao & Du, Yuyan & Li, Hailong & Wallin, Fredrik & Min, Geyong, 2019. "New methods for clustering district heating users based on consumption patterns," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
  5. Li, Kehua & Ma, Zhenjun & Robinson, Duane & Ma, Jun, 2018. "Identification of typical building daily electricity usage profiles using Gaussian mixture model-based clustering and hierarchical clustering," Applied Energy, Elsevier, vol. 231(C), pages 331-342.
  6. Guo, Zhifeng & O'Hanley, Jesse R. & Gibson, Stuart, 2022. "Predicting residential electricity consumption patterns based on smart meter and household data: A case study from the Republic of Ireland," Utilities Policy, Elsevier, vol. 79(C).
  7. Giasemidis, Georgios & Haben, Stephen & Lee, Tamsin & Singleton, Colin & Grindrod, Peter, 2017. "A genetic algorithm approach for modelling low voltage network demands," Applied Energy, Elsevier, vol. 203(C), pages 463-473.
  8. Chen, Zhiqiang & Li, Jianbin & Cheng, Long & Liu, Xiufeng, 2023. "Federated-WDCGAN: A federated smart meter data sharing framework for privacy preservation," Applied Energy, Elsevier, vol. 334(C).
  9. Wang, Zhikun & Crawley, Jenny & Li, Francis G.N. & Lowe, Robert, 2020. "Sizing of district heating systems based on smart meter data: Quantifying the aggregated domestic energy demand and demand diversity in the UK," Energy, Elsevier, vol. 193(C).
  10. Ang, Yu Qian & Berzolla, Zachary Michael & Reinhart, Christoph F., 2020. "From concept to application: A review of use cases in urban building energy modeling," Applied Energy, Elsevier, vol. 279(C).
  11. Huang, Ke & Yuan, Jianjuan & Zhou, Zhihua & Zheng, Xuejing, 2022. "Analysis and evaluation of heat source data of large-scale heating system based on descriptive data mining techniques," Energy, Elsevier, vol. 251(C).
  12. Li, Kehua & Yang, Rebecca Jing & Robinson, Duane & Ma, Jun & Ma, Zhenjun, 2019. "An agglomerative hierarchical clustering-based strategy using Shared Nearest Neighbours and multiple dissimilarity measures to identify typical daily electricity usage profiles of university library b," Energy, Elsevier, vol. 174(C), pages 735-748.
  13. Sachs, Julia & Moya, Diego & Giarola, Sara & Hawkes, Adam, 2019. "Clustered spatially and temporally resolved global heat and cooling energy demand in the residential sector," Applied Energy, Elsevier, vol. 250(C), pages 48-62.
  14. Troy Malatesta & Jessica K. Breadsell, 2022. "Identifying Home System of Practices for Energy Use with K-Means Clustering Techniques," Sustainability, MDPI, vol. 14(15), pages 1-21, July.
  15. Rajabi, Amin & Eskandari, Mohsen & Ghadi, Mojtaba Jabbari & Li, Li & Zhang, Jiangfeng & Siano, Pierluigi, 2020. "A comparative study of clustering techniques for electrical load pattern segmentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
  16. Dominik Kryzia & Marta Kuta & Dominika Matuszewska & Piotr Olczak, 2020. "Analysis of the Potential for Gas Micro-Cogeneration Development in Poland Using the Monte Carlo Method," Energies, MDPI, vol. 13(12), pages 1-24, June.
  17. García, Sebastián & Parejo, Antonio & Personal, Enrique & Ignacio Guerrero, Juan & Biscarri, Félix & León, Carlos, 2021. "A retrospective analysis of the impact of the COVID-19 restrictions on energy consumption at a disaggregated level," Applied Energy, Elsevier, vol. 287(C).
  18. Ruhang, Xu, 2020. "Efficient clustering for aggregate loads: An unsupervised pretraining based method," Energy, Elsevier, vol. 210(C).
  19. Troy Malatesta & Qilin Li & Jessica K. Breadsell & Christine Eon, 2023. "Distinguishing Household Groupings within a Precinct Based on Energy Usage Patterns Using Machine Learning Analysis," Energies, MDPI, vol. 16(10), pages 1-25, May.
  20. Zhou, Kaile & Yang, Changhui & Shen, Jianxin, 2017. "Discovering residential electricity consumption patterns through smart-meter data mining: A case study from China," Utilities Policy, Elsevier, vol. 44(C), pages 73-84.
  21. Fateh Belaid & Christophe Rault, 2020. "Energy Expenditure in Egypt: Empirical Evidence Based on A Quantile Regression Approach," Working Papers 1446, Economic Research Forum, revised 20 Dec 2020.
  22. Luo, Xuan & Hong, Tianzhen & Chen, Yixing & Piette, Mary Ann, 2017. "Electric load shape benchmarking for small- and medium-sized commercial buildings," Applied Energy, Elsevier, vol. 204(C), pages 715-725.
  23. Yu, Xinran & Ergan, Semiha, 2022. "Estimating power demand shaving capacity of buildings on an urban scale using extracted demand response profiles through machine learning models," Applied Energy, Elsevier, vol. 310(C).
  24. Yilmaz, S. & Chambers, J. & Patel, M.K., 2019. "Comparison of clustering approaches for domestic electricity load profile characterisation - Implications for demand side management," Energy, Elsevier, vol. 180(C), pages 665-677.
  25. Wen, Hanguan & Liu, Xiufeng & Yang, Ming & Lei, Bo & Xu, Cheng & Chen, Zhe, 2024. "A novel approach for identifying customer groups for personalized demand-side management services using household socio-demographic data," Energy, Elsevier, vol. 286(C).
  26. Afzalan, Milad & Jazizadeh, Farrokh, 2019. "Residential loads flexibility potential for demand response using energy consumption patterns and user segments," Applied Energy, Elsevier, vol. 254(C).
  27. Yuan, Jianjuan & Zhou, Zhihua & Tang, Huajie & Wang, Chendong & Lu, Shilei & Han, Zhao & Zhang, Ji & Sheng, Ying, 2020. "Identification heat user behavior for improving the accuracy of heating load prediction model based on wireless on-off control system," Energy, Elsevier, vol. 199(C).
  28. Cansino, José M. & Dugo, Víctor & Gálvez-Ruiz, David & Román-Collado, Rocío, 2023. "What drove electricity consumption in the residential sector during the SARS-CoV-2 confinement? A special focus on university students in southern Spain," Energy, Elsevier, vol. 262(PB).
  29. Al-Wakeel, Ali & Wu, Jianzhong & Jenkins, Nick, 2016. "State estimation of medium voltage distribution networks using smart meter measurements," Applied Energy, Elsevier, vol. 184(C), pages 207-218.
  30. Wang, Yanmin & Li, Zhiwei & Liu, Junjie & Lu, Xuan & Zhao, Laifu & Zhao, Yan & Feng, Yongtao, 2024. "Analyzing daily change patterns of indoor temperature in district heating systems: A clustering and regression approach," Applied Energy, Elsevier, vol. 358(C).
  31. Juanwei, Chen & Tao, Yu & Yue, Xu & Xiaohua, Cheng & Bo, Yang & Baomin, Zhen, 2019. "Fast analytical method for reliability evaluation of electricity-gas integrated energy system considering dispatch strategies," Applied Energy, Elsevier, vol. 242(C), pages 260-272.
  32. Roberts, Mike B. & Haghdadi, Navid & Bruce, Anna & MacGill, Iain, 2019. "Characterisation of Australian apartment electricity demand and its implications for low-carbon cities," Energy, Elsevier, vol. 180(C), pages 242-257.
  33. Kang, J. & Reiner, D., 2021. "Machine Learning on residential electricity consumption: Which households are more responsive to weather?," Cambridge Working Papers in Economics 2142, Faculty of Economics, University of Cambridge.
  34. Capozzoli, Alfonso & Piscitelli, Marco Savino & Brandi, Silvio & Grassi, Daniele & Chicco, Gianfranco, 2018. "Automated load pattern learning and anomaly detection for enhancing energy management in smart buildings," Energy, Elsevier, vol. 157(C), pages 336-352.
  35. Rongheng Lin & Budan Wu & Yun Su, 2018. "An Adaptive Weighted Pearson Similarity Measurement Method for Load Curve Clustering," Energies, MDPI, vol. 11(9), pages 1-17, September.
  36. Li, Tao & Liu, Xiangyu & Li, Guannan & Wang, Xing & Ma, Jiangqiaoyu & Xu, Chengliang & Mao, Qianjun, 2024. "A systematic review and comprehensive analysis of building occupancy prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
  37. Motlagh, Omid & Berry, Adam & O'Neil, Lachlan, 2019. "Clustering of residential electricity customers using load time series," Applied Energy, Elsevier, vol. 237(C), pages 11-24.
  38. Gianluca Trotta & Kirsten Gram-Hanssen & Pernille Lykke Jørgensen, 2020. "Heterogeneity of Electricity Consumption Patterns in Vulnerable Households," Energies, MDPI, vol. 13(18), pages 1-17, September.
  39. Trotta, Gianluca, 2020. "An empirical analysis of domestic electricity load profiles: Who consumes how much and when?," Applied Energy, Elsevier, vol. 275(C).
  40. Ye, Tinghan & Liu, Shanshan & Kontou, Eleftheria, 2024. "Managed residential electric vehicle charging minimizes electricity bills while meeting driver and community preferences," Transport Policy, Elsevier, vol. 149(C), pages 122-138.
  41. Huang, Yunyou & Zhan, Jianfeng & Luo, Chunjie & Wang, Lei & Wang, Nana & Zheng, Daoyi & Fan, Fanda & Ren, Rui, 2019. "An electricity consumption model for synthesizing scalable electricity load curves," Energy, Elsevier, vol. 169(C), pages 674-683.
  42. Alexander Tureczek & Per Sieverts Nielsen & Henrik Madsen, 2018. "Electricity Consumption Clustering Using Smart Meter Data," Energies, MDPI, vol. 11(4), pages 1-18, April.
  43. Li, Jianbin & Chen, Zhiqiang & Cheng, Long & Liu, Xiufeng, 2022. "Energy data generation with Wasserstein Deep Convolutional Generative Adversarial Networks," Energy, Elsevier, vol. 257(C).
  44. Russo, Marianna & Bertsch, Valentin, 2020. "A looming revolution: Implications of self-generation for the risk exposure of retailers," Energy Economics, Elsevier, vol. 92(C).
  45. Yildiz, B. & Bilbao, J.I. & Dore, J. & Sproul, A.B., 2017. "Recent advances in the analysis of residential electricity consumption and applications of smart meter data," Applied Energy, Elsevier, vol. 208(C), pages 402-427.
  46. Michalakopoulos, Vasilis & Sarmas, Elissaios & Papias, Ioannis & Skaloumpakas, Panagiotis & Marinakis, Vangelis & Doukas, Haris, 2024. "A machine learning-based framework for clustering residential electricity load profiles to enhance demand response programs," Applied Energy, Elsevier, vol. 361(C).
  47. Rongheng Lin & Fangchun Yang & Mingyuan Gao & Budan Wu & Yingying Zhao, 2019. "AUD-MTS: An Abnormal User Detection Approach Based on Power Load Multi-Step Clustering with Multiple Time Scales," Energies, MDPI, vol. 12(16), pages 1-19, August.
  48. Wang, Xuewei & Wang, Jing & Wang, Lin & Yuan, Ruiming, 2019. "Non-overlapping moving compressive measurement algorithm for electrical energy estimation of distorted m-sequence dynamic test signal," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
  49. Fu, Xin & Zeng, Xiao-Jun & Feng, Pengpeng & Cai, Xiuwen, 2018. "Clustering-based short-term load forecasting for residential electricity under the increasing-block pricing tariffs in China," Energy, Elsevier, vol. 165(PB), pages 76-89.
  50. Li, Tong & Wang, Zhaohua & Zhao, Wenhui, 2022. "Comparison and application potential analysis of autoencoder-based electricity pattern mining algorithms for large-scale demand response," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
  51. Koo, Choongwan & Li, Wenzhuo & Cha, Seung Hyun & Zhang, Shaojie, 2019. "A novel estimation approach for the solar radiation potential with its complex spatial pattern via machine-learning techniques," Renewable Energy, Elsevier, vol. 133(C), pages 575-592.
  52. Rongheng Lin & Zezhou Ye & Yingying Zhao, 2019. "OPEC: Daily Load Data Analysis Based on Optimized Evolutionary Clustering," Energies, MDPI, vol. 12(14), pages 1-17, July.
  53. Alexander Martin Tureczek & Per Sieverts Nielsen, 2017. "Structured Literature Review of Electricity Consumption Classification Using Smart Meter Data," Energies, MDPI, vol. 10(5), pages 1-19, April.
  54. Gerossier, Alexis & Barbier, Thibaut & Girard, Robin, 2017. "A novel method for decomposing electricity feeder load into elementary profiles from customer information," Applied Energy, Elsevier, vol. 203(C), pages 752-760.
  55. Gouveia, João Pedro & Seixas, Júlia & Mestre, Ana, 2017. "Daily electricity consumption profiles from smart meters - Proxies of behavior for space heating and cooling," Energy, Elsevier, vol. 141(C), pages 108-122.
  56. Bagheri, Mehdi & Delbari, Seyed Hamid & Pakzadmanesh, Mina & Kennedy, Christopher A., 2019. "City-integrated renewable energy design for low-carbon and climate-resilient communities," Applied Energy, Elsevier, vol. 239(C), pages 1212-1225.
  57. Khan, Waqas & Liao, Juo Yu & Walker, Shalika & Zeiler, Wim, 2022. "Impact assessment of varied data granularities from commercial buildings on exploration and learning mechanism," Applied Energy, Elsevier, vol. 319(C).
  58. Rafik Nafkha & Krzysztof Gajowniczek & Tomasz Ząbkowski, 2018. "Do Customers Choose Proper Tariff? Empirical Analysis Based on Polish Data Using Unsupervised Techniques," Energies, MDPI, vol. 11(3), pages 1-17, February.
  59. Walker, Shalika & Bergkamp, Vince & Yang, Dujuan & van Goch, T.A.J. & Katic, Katarina & Zeiler, Wim, 2021. "Improving energy self-sufficiency of a renovated residential neighborhood with heat pumps by analyzing smart meter data," Energy, Elsevier, vol. 229(C).
  60. Tanoto, Yusak & Haghdadi, Navid & Bruce, Anna & MacGill, Iain, 2020. "Clustering based assessment of cost, security and environmental tradeoffs with possible future electricity generation portfolios," Applied Energy, Elsevier, vol. 270(C).
  61. Pfenninger, Stefan, 2017. "Dealing with multiple decades of hourly wind and PV time series in energy models: A comparison of methods to reduce time resolution and the planning implications of inter-annual variability," Applied Energy, Elsevier, vol. 197(C), pages 1-13.
  62. Muhammad Irfan & Sara Deilami & Shujuan Huang & Binesh Puthen Veettil, 2023. "Rooftop Solar and Electric Vehicle Integration for Smart, Sustainable Homes: A Comprehensive Review," Energies, MDPI, vol. 16(21), pages 1-29, October.
  63. Al-Wakeel, Ali & Wu, Jianzhong & Jenkins, Nick, 2017. "k-means based load estimation of domestic smart meter measurements," Applied Energy, Elsevier, vol. 194(C), pages 333-342.
  64. Yu, Xinran & Ergan, Semiha & Dedemen, Gokmen, 2019. "A data-driven approach to extract operational signatures of HVAC systems and analyze impact on electricity consumption," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
  65. Claudia Bustamante & Stephen Bird & Lisa Legault & Susan E. Powers, 2023. "Energy Hogs and Misers: Magnitude and Variability of Individuals’ Household Electricity Consumption," Sustainability, MDPI, vol. 15(5), pages 1-18, February.
  66. Hubert Szczepaniuk & Edyta Karolina Szczepaniuk, 2022. "Applications of Artificial Intelligence Algorithms in the Energy Sector," Energies, MDPI, vol. 16(1), pages 1-24, December.
  67. Remigiusz Gawlik & Dominika Siwiec & Andrzej Pacana, 2024. "Quality–Cost–Environment Assessment of Sustainable Manufacturing of Photovoltaic Panels," Energies, MDPI, vol. 17(7), pages 1-17, March.
  68. Markovič, Rene & Gosak, Marko & Grubelnik, Vladimir & Marhl, Marko & Virtič, Peter, 2019. "Data-driven classification of residential energy consumption patterns by means of functional connectivity networks," Applied Energy, Elsevier, vol. 242(C), pages 506-515.
  69. Guo, Peiyang & Lam, Jacqueline C.K. & Li, Victor O.K., 2019. "Drivers of domestic electricity users’ price responsiveness: A novel machine learning approach," Applied Energy, Elsevier, vol. 235(C), pages 900-913.
  70. Alexandra E. Ioannou & Enrico F. Creaco & Chrysi S. Laspidou, 2021. "Exploring the Effectiveness of Clustering Algorithms for Capturing Water Consumption Behavior at Household Level," Sustainability, MDPI, vol. 13(5), pages 1-15, March.
  71. Li, Lanlan & Ming, Huayang & Fu, Weizhong & Shi, Quan & Yu, Shiwei, 2021. "Exploring household natural gas consumption patterns and their influencing factors: An integrated clustering and econometric method," Energy, Elsevier, vol. 224(C).
  72. Kamalanathan Ganesan & Jo~ao Tom'e Saraiva & Ricardo J. Bessa, 2021. "Functional Model of Residential Consumption Elasticity under Dynamic Tariffs," Papers 2111.11875, arXiv.org.
  73. Hsu, David, 2015. "Comparison of integrated clustering methods for accurate and stable prediction of building energy consumption data," Applied Energy, Elsevier, vol. 160(C), pages 153-163.
  74. Qiu, Dawei & Wang, Yi & Wang, Junkai & Jiang, Chuanwen & Strbac, Goran, 2023. "Personalized retail pricing design for smart metering consumers in electricity market," Applied Energy, Elsevier, vol. 348(C).
  75. Anam-Nawaz Khan & Naeem Iqbal & Atif Rizwan & Rashid Ahmad & Do-Hyeun Kim, 2021. "An Ensemble Energy Consumption Forecasting Model Based on Spatial-Temporal Clustering Analysis in Residential Buildings," Energies, MDPI, vol. 14(11), pages 1-25, May.
  76. Shan, Rui & Kittner, Noah, 2024. "Allocation of policy resources for energy storage development considering the Inflation Reduction Act," Energy Policy, Elsevier, vol. 184(C).
  77. Lumbreras, Mikel & Garay-Martinez, Roberto & Arregi, Beñat & Martin-Escudero, Koldobika & Diarce, Gonzalo & Raud, Margus & Hagu, Indrek, 2022. "Data driven model for heat load prediction in buildings connected to District Heating by using smart heat meters," Energy, Elsevier, vol. 239(PD).
  78. Payam Hanafizadeh & Parastou Hatami & Morteza Analoui & Amir Albadvi, 2021. "Business model innovation driven by the internet of things technology, in internet service providers’ business context," Information Systems and e-Business Management, Springer, vol. 19(4), pages 1175-1243, December.
  79. Lesley Thomson & David Jenkins, 2023. "The Use of Real Energy Consumption Data in Characterising Residential Energy Demand with an Inventory of UK Datasets," Energies, MDPI, vol. 16(16), pages 1-29, August.
  80. Luo, Xing & Zhu, Xu & Lim, Eng Gee, 2019. "A parametric bootstrap algorithm for cluster number determination of load pattern categorization," Energy, Elsevier, vol. 180(C), pages 50-60.
  81. Lee, Junsoo & Kim, Tae Wan & Koo, Choongwan, 2022. "A novel process model for developing a scalable room-level energy benchmark using real-time bigdata: Focused on identifying representative energy usage patterns," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
  82. Zhang, Xiaohai & Ramírez-Mendiola, José Luis & Li, Mingtao & Guo, Liejin, 2022. "Electricity consumption pattern analysis beyond traditional clustering methods: A novel self-adapting semi-supervised clustering method and application case study," Applied Energy, Elsevier, vol. 308(C).
  83. Satre-Meloy, Aven & Diakonova, Marina & Grünewald, Philipp, 2020. "Cluster analysis and prediction of residential peak demand profiles using occupant activity data," Applied Energy, Elsevier, vol. 260(C).
  84. Jelena Lukić & Miloš Radenković & Marijana Despotović-Zrakić & Aleksandra Labus & Zorica Bogdanović, 2017. "Supply chain intelligence for electricity markets: A smart grid perspective," Information Systems Frontiers, Springer, vol. 19(1), pages 91-107, February.
  85. Li, Xiao-Ya & Dong, Xin-Yu & Chen, Sha & Ye, Yan-Mei, 2024. "The promising future of developing large-scale PV solar farms in China: A three-stage framework for site selection," Renewable Energy, Elsevier, vol. 220(C).
  86. Do-Hyeon Ryu & Ryu-Hee Kim & Seung-Hyun Choi & Kwang-Jae Kim & Young Myoung Ko & Young-Jin Kim & Minseok Song & Dong Gu Choi, 2020. "Utilizing Electricity Consumption Data to Assess the Noise Discomfort Caused by Electrical Appliances between Neighbors: A Case Study of a Campus Apartment Building," Sustainability, MDPI, vol. 12(20), pages 1-16, October.
  87. Bertsch, Valentin & Geldermann, Jutta & Lühn, Tobias, 2017. "What drives the profitability of household PV investments, self-consumption and self-sufficiency?," Applied Energy, Elsevier, vol. 204(C), pages 1-15.
  88. Liu, Bo & Hou, Yufan & Luan, Wenpeng & Liu, Zishuai & Chen, Sheng & Yu, Yixin, 2023. "A divide-and-conquer method for compression and reconstruction of smart meter data," Applied Energy, Elsevier, vol. 336(C).
  89. Leanne S. Giordono & June Flora & Chad Zanocco & Hilary Boudet, 2022. "Food Practice Lifestyles: Identification and Implications for Energy Sustainability," IJERPH, MDPI, vol. 19(9), pages 1-19, May.
  90. Malin Lachmann & Jaime Maldonado & Wiebke Bergmann & Francesca Jung & Markus Weber & Christof Büskens, 2020. "Self-Learning Data-Based Models as Basis of a Universally Applicable Energy Management System," Energies, MDPI, vol. 13(8), pages 1-42, April.
  91. Hao, Ying & Dong, Lei & Liao, Xiaozhong & Liang, Jun & Wang, Lijie & Wang, Bo, 2019. "A novel clustering algorithm based on mathematical morphology for wind power generation prediction," Renewable Energy, Elsevier, vol. 136(C), pages 572-585.
  92. Grillone, Benedetto & Mor, Gerard & Danov, Stoyan & Cipriano, Jordi & Sumper, Andreas, 2021. "A data-driven methodology for enhanced measurement and verification of energy efficiency savings in commercial buildings," Applied Energy, Elsevier, vol. 301(C).
  93. Tang, Rui & Yildiz, Baran & Leong, Philip H.W. & Vassallo, Anthony & Dore, Jonathon, 2019. "Residential battery sizing model using net meter energy data clustering," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
  94. Többen, Johannes & Schröder, Thomas, 2018. "A maximum entropy approach to the estimation of spatially and sectorally disaggregated electricity load curves," Applied Energy, Elsevier, vol. 225(C), pages 797-813.
  95. Robbert Claeys & Hakim Azaioud & Rémy Cleenwerck & Jos Knockaert & Jan Desmet, 2020. "A Novel Feature Set for Low-Voltage Consumers, Based on the Temporal Dependence of Consumption and Peak Demands," Energies, MDPI, vol. 14(1), pages 1-24, December.
  96. Zhan, Sicheng & Liu, Zhaoru & Chong, Adrian & Yan, Da, 2020. "Building categorization revisited: A clustering-based approach to using smart meter data for building energy benchmarking," Applied Energy, Elsevier, vol. 269(C).
  97. Wen, Lulu & Zhou, Kaile & Yang, Shanlin & Li, Lanlan, 2018. "Compression of smart meter big data: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 59-69.
  98. Yang, Ting & Ren, Minglun & Zhou, Kaile, 2018. "Identifying household electricity consumption patterns: A case study of Kunshan, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 861-868.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.