IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2022i1p347-d1017897.html
   My bibliography  Save this article

Applications of Artificial Intelligence Algorithms in the Energy Sector

Author

Listed:
  • Hubert Szczepaniuk

    (Warsaw University of Life Science WULS-SGGW, 02-787 Warsaw, Poland)

  • Edyta Karolina Szczepaniuk

    (Polish Air Force University, 08-521 Dęblin, Poland)

Abstract

The digital transformation of the energy sector toward the Smart Grid paradigm, intelligent energy management, and distributed energy integration poses new requirements for computer science. Issues related to the automation of power grid management, multidimensional analysis of data generated in Smart Grids, and optimization of decision-making processes require urgent solutions. The article aims to analyze the use of selected artificial intelligence (AI) algorithms to support the abovementioned issues. In particular, machine learning methods, metaheuristic algorithms, and intelligent fuzzy inference systems were analyzed. Examples of the analyzed algorithms were tested in crucial domains of the energy sector. The study analyzed cybersecurity, Smart Grid management, energy saving, power loss minimization, fault diagnosis, and renewable energy sources. For each domain of the energy sector, specific engineering problems were defined, for which the use of artificial intelligence algorithms was analyzed. Research results indicate that AI algorithms can improve the processes of energy generation, distribution, storage, consumption, and trading. Based on conducted analyses, we defined open research challenges for the practical application of AI algorithms in critical domains of the energy sector.

Suggested Citation

  • Hubert Szczepaniuk & Edyta Karolina Szczepaniuk, 2022. "Applications of Artificial Intelligence Algorithms in the Energy Sector," Energies, MDPI, vol. 16(1), pages 1-24, December.
  • Handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:347-:d:1017897
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/1/347/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/1/347/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jules Maurice Habumugisha & Ningsheng Chen & Mahfuzur Rahman & Md Monirul Islam & Hilal Ahmad & Ahmed Elbeltagi & Gitika Sharma & Sharmina Naznin Liza & Ashraf Dewan, 2022. "Landslide Susceptibility Mapping with Deep Learning Algorithms," Sustainability, MDPI, vol. 14(3), pages 1-22, February.
    2. Shamim Akhtar & Muhamad Zahim Bin Sujod & Syed Sajjad Hussain Rizvi, 2022. "An Intelligent Data-Driven Approach for Electrical Energy Load Management Using Machine Learning Algorithms," Energies, MDPI, vol. 15(15), pages 1-19, August.
    3. Oussama Laayati & Hicham El Hadraoui & Adila El Magharaoui & Nabil El-Bazi & Mostafa Bouzi & Ahmed Chebak & Josep M. Guerrero, 2022. "An AI-Layered with Multi-Agent Systems Architecture for Prognostics Health Management of Smart Transformers: A Novel Approach for Smart Grid-Ready Energy Management Systems," Energies, MDPI, vol. 15(19), pages 1-28, October.
    4. Huseyin Polat & Onur Polat & Aydin Cetin, 2020. "Detecting DDoS Attacks in Software-Defined Networks Through Feature Selection Methods and Machine Learning Models," Sustainability, MDPI, vol. 12(3), pages 1-16, February.
    5. Matti Grosse & Hendrik Send & Thomas Schildhauer, 2019. "Lessons Learned from Establishing the Energy-Informatics Business Model: Case of a German Energy Company," Sustainability, MDPI, vol. 11(3), pages 1-18, February.
    6. Xu Zheng & Shengchao Zhou & Rui Xu & Huaping Chen, 2020. "Energy-efficient scheduling for multi-objective two-stage flow shop using a hybrid ant colony optimisation algorithm," International Journal of Production Research, Taylor & Francis Journals, vol. 58(13), pages 4103-4120, July.
    7. Salman Khalid & Hyunho Hwang & Heung Soo Kim, 2021. "Real-World Data-Driven Machine-Learning-Based Optimal Sensor Selection Approach for Equipment Fault Detection in a Thermal Power Plant," Mathematics, MDPI, vol. 9(21), pages 1-27, November.
    8. Helder Pereira & Bruno Ribeiro & Luis Gomes & Zita Vale, 2022. "Smart Grid Ecosystem Modeling Using a Novel Framework for Heterogenous Agent Communities," Sustainability, MDPI, vol. 14(23), pages 1-20, November.
    9. McLoughlin, Fintan & Duffy, Aidan & Conlon, Michael, 2015. "A clustering approach to domestic electricity load profile characterisation using smart metering data," Applied Energy, Elsevier, vol. 141(C), pages 190-199.
    10. Chongchong Xu & Zhicheng Liao & Chaojie Li & Xiaojun Zhou & Renyou Xie, 2022. "Review on Interpretable Machine Learning in Smart Grid," Energies, MDPI, vol. 15(12), pages 1-31, June.
    11. Ivana Damjanović & Ivica Pavić & Mate Puljiz & Mario Brcic, 2022. "Deep Reinforcement Learning-Based Approach for Autonomous Power Flow Control Using Only Topology Changes," Energies, MDPI, vol. 15(19), pages 1-16, September.
    12. Ahmed Idries & John Krogstie & Jayaprakash Rajasekharan, 2022. "Dynamic Capabilities in Electrical Energy Digitalization: A Case from the Norwegian Ecosystem," Energies, MDPI, vol. 15(22), pages 1-25, November.
    13. William Nelson & Charles Culp, 2022. "Machine Learning Methods for Automated Fault Detection and Diagnostics in Building Systems—A Review," Energies, MDPI, vol. 15(15), pages 1-20, July.
    14. Dmitry Duplyakin & Koenraad F. Beckers & Drew L. Siler & Michael J. Martin & Henry E. Johnston, 2022. "Modeling Subsurface Performance of a Geothermal Reservoir Using Machine Learning," Energies, MDPI, vol. 15(3), pages 1-20, January.
    15. Szczepaniuk, Edyta Karolina & Szczepaniuk, Hubert, 2022. "Analysis of cybersecurity competencies: Recommendations for telecommunications policy," Telecommunications Policy, Elsevier, vol. 46(3).
    16. Motlagh, Omid & Paevere, Phillip & Hong, Tang Sai & Grozev, George, 2015. "Analysis of household electricity consumption behaviours: Impact of domestic electricity generation," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 165-178.
    17. Mostafa Bakkar & Santiago Bogarra & Felipe Córcoles & Ahmed Aboelhassan & Shuo Wang & Javier Iglesias, 2022. "Artificial Intelligence-Based Protection for Smart Grids," Energies, MDPI, vol. 15(13), pages 1-18, July.
    18. Min Wu & Wuhua Chen & Xiaohong Tian, 2022. "Optimal Energy Consumption Path Planning for Quadrotor UAV Transmission Tower Inspection Based on Simulated Annealing Algorithm," Energies, MDPI, vol. 15(21), pages 1-17, October.
    19. Kouadri, Abdelmalek & Hajji, Mansour & Harkat, Mohamed-Faouzi & Abodayeh, Kamaleldin & Mansouri, Majdi & Nounou, Hazem & Nounou, Mohamed, 2020. "Hidden Markov model based principal component analysis for intelligent fault diagnosis of wind energy converter systems," Renewable Energy, Elsevier, vol. 150(C), pages 598-606.
    20. Amir Mosavi & Mohsen Salimi & Sina Faizollahzadeh Ardabili & Timon Rabczuk & Shahaboddin Shamshirband & Annamaria R. Varkonyi-Koczy, 2019. "State of the Art of Machine Learning Models in Energy Systems, a Systematic Review," Energies, MDPI, vol. 12(7), pages 1-42, April.
    21. Chia-Sheng Tu & Wen-Chang Tsai & Chih-Ming Hong & Whei-Min Lin, 2022. "Short-Term Solar Power Forecasting via General Regression Neural Network with Grey Wolf Optimization," Energies, MDPI, vol. 15(18), pages 1-20, September.
    22. Nadine Kabbara & Mohand Ouamer Nait Belaid & Madeleine Gibescu & Luis Ramirez Camargo & Jerome Cantenot & Thierry Coste & Vincent Audebert & Hugo Morais, 2022. "Towards Software-Defined Protection, Automation, and Control in Power Systems: Concepts, State of the Art, and Future Challenges," Energies, MDPI, vol. 15(24), pages 1-27, December.
    23. Adila El Maghraoui & Younes Ledmaoui & Oussama Laayati & Hicham El Hadraoui & Ahmed Chebak, 2022. "Smart Energy Management: A Comparative Study of Energy Consumption Forecasting Algorithms for an Experimental Open-Pit Mine," Energies, MDPI, vol. 15(13), pages 1-22, June.
    24. Adrian Eisenmann & Tim Streubel & Krzysztof Rudion, 2022. "Power Quality Mitigation via Smart Demand-Side Management Based on a Genetic Algorithm," Energies, MDPI, vol. 15(4), pages 1-24, February.
    25. Mohsin Shahzad & Waseem Akram & Muhammad Arif & Uzair Khan & Barkat Ullah, 2021. "Optimal Siting and Sizing of Distributed Generators by Strawberry Plant Propagation Algorithm," Energies, MDPI, vol. 14(6), pages 1-13, March.
    26. Sadeq D. Al-Majidi & Mohammed Kh. AL-Nussairi & Ali Jasim Mohammed & Adel Manaa Dakhil & Maysam F. Abbod & Hamed S. Al-Raweshidy, 2022. "Design of a Load Frequency Controller Based on an Optimal Neural Network," Energies, MDPI, vol. 15(17), pages 1-28, August.
    27. Bibi Ibrahim & Luis Rabelo & Edgar Gutierrez-Franco & Nicolas Clavijo-Buritica, 2022. "Machine Learning for Short-Term Load Forecasting in Smart Grids," Energies, MDPI, vol. 15(21), pages 1-19, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robbert Claeys & Hakim Azaioud & Rémy Cleenwerck & Jos Knockaert & Jan Desmet, 2020. "A Novel Feature Set for Low-Voltage Consumers, Based on the Temporal Dependence of Consumption and Peak Demands," Energies, MDPI, vol. 14(1), pages 1-24, December.
    2. Tang, Rui & Yildiz, Baran & Leong, Philip H.W. & Vassallo, Anthony & Dore, Jonathon, 2019. "Residential battery sizing model using net meter energy data clustering," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    3. Li, Wenqiang & Gong, Guangcai & Fan, Houhua & Peng, Pei & Chun, Liang & Fang, Xi, 2021. "A clustering-based approach for “cross-scale” load prediction on building level in HVAC systems," Applied Energy, Elsevier, vol. 282(PB).
    4. Dorian Skrobek & Jaroslaw Krzywanski & Marcin Sosnowski & Ghulam Moeen Uddin & Waqar Muhammad Ashraf & Karolina Grabowska & Anna Zylka & Anna Kulakowska & Wojciech Nowak, 2023. "Artificial Intelligence for Energy Processes and Systems: Applications and Perspectives," Energies, MDPI, vol. 16(8), pages 1-12, April.
    5. Aya Amer & Khaled Shaban & Ahmed Massoud, 2022. "Demand Response in HEMSs Using DRL and the Impact of Its Various Configurations and Environmental Changes," Energies, MDPI, vol. 15(21), pages 1-20, November.
    6. Nabil El Bazi & Mustapha Mabrouki & Oussama Laayati & Nada Ouhabi & Hicham El Hadraoui & Fatima-Ezzahra Hammouch & Ahmed Chebak, 2023. "Generic Multi-Layered Digital-Twin-Framework-Enabled Asset Lifecycle Management for the Sustainable Mining Industry," Sustainability, MDPI, vol. 15(4), pages 1-24, February.
    7. Motlagh, Omid & Berry, Adam & O'Neil, Lachlan, 2019. "Clustering of residential electricity customers using load time series," Applied Energy, Elsevier, vol. 237(C), pages 11-24.
    8. Zhang, Zhe & Song, Xiaoling & Gong, Xue & Yin, Yong & Lev, Benjamin & Zhou, Xiaoyang, 2024. "Coordinated seru scheduling and distribution operation problems with DeJong’s learning effects," European Journal of Operational Research, Elsevier, vol. 313(2), pages 452-464.
    9. Li, Chen & Kies, Alexander & Zhou, Kai & Schlott, Markus & Sayed, Omar El & Bilousova, Mariia & Stöcker, Horst, 2024. "Optimal Power Flow in a highly renewable power system based on attention neural networks," Applied Energy, Elsevier, vol. 359(C).
    10. Saima Akhtar & Sulman Shahzad & Asad Zaheer & Hafiz Sami Ullah & Heybet Kilic & Radomir Gono & Michał Jasiński & Zbigniew Leonowicz, 2023. "Short-Term Load Forecasting Models: A Review of Challenges, Progress, and the Road Ahead," Energies, MDPI, vol. 16(10), pages 1-29, May.
    11. Vasallo, Manuel Jesús & Cojocaru, Emilian Gelu & Gegúndez, Manuel Emilio & Marín, Diego, 2021. "Application of data-based solar field models to optimal generation scheduling in concentrating solar power plants," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 1130-1149.
    12. Ruhang, Xu, 2020. "Efficient clustering for aggregate loads: An unsupervised pretraining based method," Energy, Elsevier, vol. 210(C).
    13. Zhou, Kaile & Yang, Changhui & Shen, Jianxin, 2017. "Discovering residential electricity consumption patterns through smart-meter data mining: A case study from China," Utilities Policy, Elsevier, vol. 44(C), pages 73-84.
    14. Alvaro Furlani Bastos & Surya Santoso, 2021. "Optimization Techniques for Mining Power Quality Data and Processing Unbalanced Datasets in Machine Learning Applications," Energies, MDPI, vol. 14(2), pages 1-21, January.
    15. Wen, Hanguan & Liu, Xiufeng & Yang, Ming & Lei, Bo & Xu, Cheng & Chen, Zhe, 2024. "A novel approach for identifying customer groups for personalized demand-side management services using household socio-demographic data," Energy, Elsevier, vol. 286(C).
    16. Capozzoli, Alfonso & Piscitelli, Marco Savino & Brandi, Silvio & Grassi, Daniele & Chicco, Gianfranco, 2018. "Automated load pattern learning and anomaly detection for enhancing energy management in smart buildings," Energy, Elsevier, vol. 157(C), pages 336-352.
    17. Rongheng Lin & Budan Wu & Yun Su, 2018. "An Adaptive Weighted Pearson Similarity Measurement Method for Load Curve Clustering," Energies, MDPI, vol. 11(9), pages 1-17, September.
    18. Gianluca Trotta & Kirsten Gram-Hanssen & Pernille Lykke Jørgensen, 2020. "Heterogeneity of Electricity Consumption Patterns in Vulnerable Households," Energies, MDPI, vol. 13(18), pages 1-17, September.
    19. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    20. Türkoğlu, A. Selim & Erkmen, Burcu & Eren, Yavuz & Erdinç, Ozan & Küçükdemiral, İbrahim, 2024. "Integrated Approaches in Resilient Hierarchical Load Forecasting via TCN and Optimal Valley Filling Based Demand Response Application," Applied Energy, Elsevier, vol. 360(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:347-:d:1017897. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.