IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v361y2024ics030626192400326x.html
   My bibliography  Save this article

A machine learning-based framework for clustering residential electricity load profiles to enhance demand response programs

Author

Listed:
  • Michalakopoulos, Vasilis
  • Sarmas, Elissaios
  • Papias, Ioannis
  • Skaloumpakas, Panagiotis
  • Marinakis, Vangelis
  • Doukas, Haris

Abstract

Load shapes derived from smart meter data are frequently employed to analyze daily energy consumption patterns, particularly in the context of applications like Demand Response (DR). Nevertheless, one of the most important challenges to this endeavor lies in identifying the most suitable consumer clusters with similar consumption behaviors. In this paper, we present a novel machine learning based framework in order to achieve optimal load profiling through a real case study, utilizing data from almost 5000 households in London. Four widely used clustering algorithms are applied specifically K-means, K-medoids, Hierarchical Agglomerative Clustering and Density-based Spatial Clustering. An empirical analysis as well as multiple evaluation metrics are leveraged to assess those algorithms. Following that, we redefine the problem as a probabilistic classification one, with the classifier emulating the behavior of a clustering algorithm, leveraging Explainable AI (xAI) to enhance the interpretability of our solution. According to the clustering algorithm analysis the optimal number of clusters for this case is seven. Despite that, our methodology shows that two of the clusters, almost 10% of the dataset, exhibit significant internal dissimilarity. As a result, these clusters have been excluded from consideration for DR programs. The scalability and versatility of our solution makes it an ideal choice for power utility companies aiming to segment their users for creating more targeted DR programs.

Suggested Citation

  • Michalakopoulos, Vasilis & Sarmas, Elissaios & Papias, Ioannis & Skaloumpakas, Panagiotis & Marinakis, Vangelis & Doukas, Haris, 2024. "A machine learning-based framework for clustering residential electricity load profiles to enhance demand response programs," Applied Energy, Elsevier, vol. 361(C).
  • Handle: RePEc:eee:appene:v:361:y:2024:i:c:s030626192400326x
    DOI: 10.1016/j.apenergy.2024.122943
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192400326X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122943?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. McLoughlin, Fintan & Duffy, Aidan & Conlon, Michael, 2015. "A clustering approach to domestic electricity load profile characterisation using smart metering data," Applied Energy, Elsevier, vol. 141(C), pages 190-199.
    2. Yilmaz, S. & Chambers, J. & Patel, M.K., 2019. "Comparison of clustering approaches for domestic electricity load profile characterisation - Implications for demand side management," Energy, Elsevier, vol. 180(C), pages 665-677.
    3. Zigui Jiang & Rongheng Lin & Fangchun Yang, 2018. "A Hybrid Machine Learning Model for Electricity Consumer Categorization Using Smart Meter Data," Energies, MDPI, vol. 11(9), pages 1-19, August.
    4. Rajabi, Amin & Eskandari, Mohsen & Ghadi, Mojtaba Jabbari & Li, Li & Zhang, Jiangfeng & Siano, Pierluigi, 2020. "A comparative study of clustering techniques for electrical load pattern segmentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    5. Daiva Stanelyte & Neringa Radziukyniene & Virginijus Radziukynas, 2022. "Overview of Demand-Response Services: A Review," Energies, MDPI, vol. 15(5), pages 1-31, February.
    6. Qiu, Dawei & Ye, Yujian & Papadaskalopoulos, Dimitrios & Strbac, Goran, 2021. "Scalable coordinated management of peer-to-peer energy trading: A multi-cluster deep reinforcement learning approach," Applied Energy, Elsevier, vol. 292(C).
    7. Emilie Devijver & Yannig Goude & Jean‐Michel Poggi, 2020. "Clustering electricity consumers using high‐dimensional regression mixture models," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 36(1), pages 159-177, January.
    8. João Soares & Fernando Lezama & Tiago Pinto & Hugo Morais, 2018. "Complex Optimization and Simulation in Power Systems," Complexity, Hindawi, vol. 2018, pages 1-3, October.
    9. Qiu, Dawei & Wang, Yi & Wang, Junkai & Jiang, Chuanwen & Strbac, Goran, 2023. "Personalized retail pricing design for smart metering consumers in electricity market," Applied Energy, Elsevier, vol. 348(C).
    10. Chicco, Gianfranco, 2012. "Overview and performance assessment of the clustering methods for electrical load pattern grouping," Energy, Elsevier, vol. 42(1), pages 68-80.
    11. Motlagh, Omid & Berry, Adam & O'Neil, Lachlan, 2019. "Clustering of residential electricity customers using load time series," Applied Energy, Elsevier, vol. 237(C), pages 11-24.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiu, Dawei & Wang, Yi & Wang, Junkai & Jiang, Chuanwen & Strbac, Goran, 2023. "Personalized retail pricing design for smart metering consumers in electricity market," Applied Energy, Elsevier, vol. 348(C).
    2. Valdes, Javier & Masip Macia, Yunesky & Dorner, Wolfgang & Ramirez Camargo, Luis, 2021. "Unsupervised grouping of industrial electricity demand profiles: Synthetic profiles for demand-side management applications," Energy, Elsevier, vol. 215(PA).
    3. Mishra, Kakuli & Basu, Srinka & Maulik, Ujjwal, 2022. "Load profile mining using directed weighted graphs with application towards demand response management," Applied Energy, Elsevier, vol. 311(C).
    4. Wen, Hanguan & Liu, Xiufeng & Yang, Ming & Lei, Bo & Xu, Cheng & Chen, Zhe, 2024. "A novel approach for identifying customer groups for personalized demand-side management services using household socio-demographic data," Energy, Elsevier, vol. 286(C).
    5. Rongheng Lin & Budan Wu & Yun Su, 2018. "An Adaptive Weighted Pearson Similarity Measurement Method for Load Curve Clustering," Energies, MDPI, vol. 11(9), pages 1-17, September.
    6. Russo, Marianna & Bertsch, Valentin, 2020. "A looming revolution: Implications of self-generation for the risk exposure of retailers," Energy Economics, Elsevier, vol. 92(C).
    7. Tang, Rui & Yildiz, Baran & Leong, Philip H.W. & Vassallo, Anthony & Dore, Jonathon, 2019. "Residential battery sizing model using net meter energy data clustering," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    8. Alejandro Pena-Bello & Edward Barbour & Marta C. Gonzalez & Selin Yilmaz & Martin K. Patel & David Parra, 2020. "How Does the Electricity Demand Profile Impact the Attractiveness of PV-Coupled Battery Systems Combining Applications?," Energies, MDPI, vol. 13(15), pages 1-19, August.
    9. Li, Jianbin & Chen, Zhiqiang & Cheng, Long & Liu, Xiufeng, 2022. "Energy data generation with Wasserstein Deep Convolutional Generative Adversarial Networks," Energy, Elsevier, vol. 257(C).
    10. Fang, Hongliang & Wang, Yan-Wu & Xiao, Jiang-Wen & Cui, Shichang & Qin, Zhaoyu, 2021. "A new mining framework with piecewise symbolic spatial clustering," Applied Energy, Elsevier, vol. 298(C).
    11. Troy Malatesta & Jessica K. Breadsell, 2022. "Identifying Home System of Practices for Energy Use with K-Means Clustering Techniques," Sustainability, MDPI, vol. 14(15), pages 1-21, July.
    12. Fu, Xin & Zeng, Xiao-Jun & Feng, Pengpeng & Cai, Xiuwen, 2018. "Clustering-based short-term load forecasting for residential electricity under the increasing-block pricing tariffs in China," Energy, Elsevier, vol. 165(PB), pages 76-89.
    13. Senfeng Cen & Jae Hung Yoo & Chang Gyoon Lim, 2022. "Electricity Pattern Analysis by Clustering Domestic Load Profiles Using Discrete Wavelet Transform," Energies, MDPI, vol. 15(4), pages 1-18, February.
    14. Gouveia, João Pedro & Seixas, Júlia & Mestre, Ana, 2017. "Daily electricity consumption profiles from smart meters - Proxies of behavior for space heating and cooling," Energy, Elsevier, vol. 141(C), pages 108-122.
    15. Shan, Rui & Kittner, Noah, 2024. "Allocation of policy resources for energy storage development considering the Inflation Reduction Act," Energy Policy, Elsevier, vol. 184(C).
    16. Zhang, Xiaohai & Ramírez-Mendiola, José Luis & Li, Mingtao & Guo, Liejin, 2022. "Electricity consumption pattern analysis beyond traditional clustering methods: A novel self-adapting semi-supervised clustering method and application case study," Applied Energy, Elsevier, vol. 308(C).
    17. Santiago Bañales & Raquel Dormido & Natividad Duro, 2021. "Smart Meters Time Series Clustering for Demand Response Applications in the Context of High Penetration of Renewable Energy Resources," Energies, MDPI, vol. 14(12), pages 1-22, June.
    18. Ahir, Rajesh K. & Chakraborty, Basab, 2023. "A data-driven analytic approach for investigation of electricity demand variability for energy conservation programs," Energy, Elsevier, vol. 282(C).
    19. Ruhang, Xu, 2020. "Efficient clustering for aggregate loads: An unsupervised pretraining based method," Energy, Elsevier, vol. 210(C).
    20. Zhou, Kaile & Yang, Changhui & Shen, Jianxin, 2017. "Discovering residential electricity consumption patterns through smart-meter data mining: A case study from China," Utilities Policy, Elsevier, vol. 44(C), pages 73-84.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:361:y:2024:i:c:s030626192400326x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.