IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v141y2015icp190-199.html
   My bibliography  Save this article

A clustering approach to domestic electricity load profile characterisation using smart metering data

Author

Listed:
  • McLoughlin, Fintan
  • Duffy, Aidan
  • Conlon, Michael

Abstract

The availability of increasing amounts of data to electricity utilities through the implementation of domestic smart metering campaigns has meant that traditional ways of analysing meter reading information such as descriptive statistics has become increasingly difficult. Key characteristic information to the data is often lost, particularly when averaging or aggregation processes are applied. Therefore, other methods of analysing data need to be used so that this information is not lost. One such method which lends itself to analysing large amounts of information is data mining. This allows for the data to be segmented before such aggregation processes are applied. Moreover, segmentation allows for dimension reduction thus enabling easier manipulation of the data.

Suggested Citation

  • McLoughlin, Fintan & Duffy, Aidan & Conlon, Michael, 2015. "A clustering approach to domestic electricity load profile characterisation using smart metering data," Applied Energy, Elsevier, vol. 141(C), pages 190-199.
  • Handle: RePEc:eee:appene:v:141:y:2015:i:c:p:190-199
    DOI: 10.1016/j.apenergy.2014.12.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914012963
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.12.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leahy, Eimear & Lyons, Sean, 2010. "Energy use and appliance ownership in Ireland," Energy Policy, Elsevier, vol. 38(8), pages 4265-4279, August.
    2. Michael Parti & Cynthia Parti, 1980. "The Total and Appliance-Specific Conditional Demand for Electricity in the Household Sector," Bell Journal of Economics, The RAND Corporation, vol. 11(1), pages 309-321, Spring.
    3. Swan, Lukas G. & Ugursal, V. Ismet, 2009. "Modeling of end-use energy consumption in the residential sector: A review of modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1819-1835, October.
    4. Aydinalp, Merih & Ismet Ugursal, V. & Fung, Alan S., 2004. "Modeling of the space and domestic hot-water heating energy-consumption in the residential sector using neural networks," Applied Energy, Elsevier, vol. 79(2), pages 159-178, October.
    5. Räsänen, Teemu & Voukantsis, Dimitrios & Niska, Harri & Karatzas, Kostas & Kolehmainen, Mikko, 2010. "Data-based method for creating electricity use load profiles using large amount of customer-specific hourly measured electricity use data," Applied Energy, Elsevier, vol. 87(11), pages 3538-3545, November.
    6. McLoughlin, Fintan & Duffy, Aidan & Conlon, Michael, 2013. "Evaluation of time series techniques to characterise domestic electricity demand," Energy, Elsevier, vol. 50(C), pages 120-130.
    7. Riddell, A. G. & Manson, K., 1996. "Parametrisation of domestic load profiles," Applied Energy, Elsevier, vol. 54(3), pages 199-210, July.
    8. O'Doherty, Joe & Lyons, Sean & Tol, Richard S.J., 2008. "Energy-using appliances and energy-saving features: Determinants of ownership in Ireland," Applied Energy, Elsevier, vol. 85(7), pages 650-662, July.
    9. Dennis J. Aigner & Cynts Sorooshian & Pamela Kerwin, 1984. "Conditional Demand Analysis for Estimating Residential End-Use Load Profiles," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 81-98.
    10. Räsänen, Teemu & Ruuskanen, Juhani & Kolehmainen, Mikko, 2008. "Reducing energy consumption by using self-organizing maps to create more personalized electricity use information," Applied Energy, Elsevier, vol. 85(9), pages 830-840, September.
    11. Pappas, S.Sp. & Ekonomou, L. & Karamousantas, D.Ch. & Chatzarakis, G.E. & Katsikas, S.K. & Liatsis, P., 2008. "Electricity demand loads modeling using AutoRegressive Moving Average (ARMA) models," Energy, Elsevier, vol. 33(9), pages 1353-1360.
    12. Aydinalp, Merih & Ismet Ugursal, V. & Fung, Alan S., 2002. "Modeling of the appliance, lighting, and space-cooling energy consumptions in the residential sector using neural networks," Applied Energy, Elsevier, vol. 71(2), pages 87-110, February.
    13. Bartels, Robert & Fiebig, Denzil G. & Garben, Michael & Lumsdaine, Robert, 1992. "An end-use electricity load simulation model : Delmod," Utilities Policy, Elsevier, vol. 2(1), pages 71-82, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yildiz, B. & Bilbao, J.I. & Dore, J. & Sproul, A.B., 2017. "Recent advances in the analysis of residential electricity consumption and applications of smart meter data," Applied Energy, Elsevier, vol. 208(C), pages 402-427.
    2. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    3. Shigeru Matsumoto, 2015. "Electric Appliance Ownership and Usage: Application of Conditional Demand Analysis to Japanese Household Data," Proceedings of International Academic Conferences 3105452, International Institute of Social and Economic Sciences.
    4. Matsumoto, Shigeru, 2016. "How do household characteristics affect appliance usage? Application of conditional demand analysis to Japanese household data," Energy Policy, Elsevier, vol. 94(C), pages 214-223.
    5. Li, Wenliang & Zhou, Yuyu & Cetin, Kristen & Eom, Jiyong & Wang, Yu & Chen, Gang & Zhang, Xuesong, 2017. "Modeling urban building energy use: A review of modeling approaches and procedures," Energy, Elsevier, vol. 141(C), pages 2445-2457.
    6. Grandjean, A. & Adnot, J. & Binet, G., 2012. "A review and an analysis of the residential electric load curve models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6539-6565.
    7. Swan, Lukas G. & Ugursal, V. Ismet, 2009. "Modeling of end-use energy consumption in the residential sector: A review of modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1819-1835, October.
    8. Satre-Meloy, Aven & Diakonova, Marina & Grünewald, Philipp, 2020. "Cluster analysis and prediction of residential peak demand profiles using occupant activity data," Applied Energy, Elsevier, vol. 260(C).
    9. McLoughlin, Fintan & Duffy, Aidan & Conlon, Michael, 2013. "Evaluation of time series techniques to characterise domestic electricity demand," Energy, Elsevier, vol. 50(C), pages 120-130.
    10. Aydinalp-Koksal, Merih & Ugursal, V. Ismet, 2008. "Comparison of neural network, conditional demand analysis, and engineering approaches for modeling end-use energy consumption in the residential sector," Applied Energy, Elsevier, vol. 85(4), pages 271-296, April.
    11. Yanxia Li & Chao Wang & Sijie Zhu & Junyan Yang & Shen Wei & Xinkai Zhang & Xing Shi, 2020. "A Comparison of Various Bottom-Up Urban Energy Simulation Methods Using a Case Study in Hangzhou, China," Energies, MDPI, vol. 13(18), pages 1-23, September.
    12. Zhao, Hai-xiang & Magoulès, Frédéric, 2012. "A review on the prediction of building energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3586-3592.
    13. Al-Ghandoor, A. & Jaber, J.O. & Al-Hinti, I. & Mansour, I.M., 2009. "Residential past and future energy consumption: Potential savings and environmental impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1262-1274, August.
    14. Anna Kipping & Erik Trømborg, 2017. "Modeling Aggregate Hourly Energy Consumption in a Regional Building Stock," Energies, MDPI, vol. 11(1), pages 1-20, December.
    15. Papineau, Maya & Yassin, Kareman & Newsham, Guy & Brice, Sarah, 2021. "Conditional demand analysis as a tool to evaluate energy policy options on the path to grid decarbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    16. Hannah Goozee, 2017. "Energy, poverty and development: a primer for the Sustainable Development Goals," Working Papers 156, International Policy Centre for Inclusive Growth.
    17. Biswas, M.A. Rafe & Robinson, Melvin D. & Fumo, Nelson, 2016. "Prediction of residential building energy consumption: A neural network approach," Energy, Elsevier, vol. 117(P1), pages 84-92.
    18. Yu, Biying & Zhang, Junyi & Fujiwara, Akimasa, 2011. "Representing in-home and out-of-home energy consumption behavior in Beijing," Energy Policy, Elsevier, vol. 39(7), pages 4168-4177, July.
    19. Soo-Jin Lee & You-Jeong Kim & Hye-Sun Jin & Sung-Im Kim & Soo-Yeon Ha & Seung-Yeong Song, 2019. "Residential End-Use Energy Estimation Models in Korean Apartment Units through Multiple Regression Analysis," Energies, MDPI, vol. 12(12), pages 1-18, June.
    20. Inoue, Nozomu & Matsumoto, Shigeru, 2019. "An examination of losses in energy savings after the Japanese Top Runner Program?," Energy Policy, Elsevier, vol. 124(C), pages 312-319.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:141:y:2015:i:c:p:190-199. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.