IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v251y2022ics036054422200737x.html
   My bibliography  Save this article

Analysis and evaluation of heat source data of large-scale heating system based on descriptive data mining techniques

Author

Listed:
  • Huang, Ke
  • Yuan, Jianjuan
  • Zhou, Zhihua
  • Zheng, Xuejing

Abstract

The on-demand parameters of heat source are the precondition for ensuring the safe, stable and energy-saving operation of heating system. For large-scale heating system, the existing predictive methods are not applicable due to the complexity of modeling, while the design heating load index method has many influencing factors, resulting in a low accuracy of obtaining accurate values. In this paper, firstly, the simplified mathematical model of the heating substation is built, and the calculation methods of under-demand rate (η) and energy-saving rate (ς) are proposed for diagnosis thermal balance and evaluation energy-saving potential. Secondly, the variation relationship among heat source parameters is analyzed and the input parameters of the analysis process are determined, then cluster analysis is adopted to identify the operation strategy, and non-on-demand clusters are eliminated from the perspective of professional knowledge. Thirdly, the data in the remaining clusters are discretized, association analysis is used to obtain the frequent item-sets of each cluster, and on-demand heating parameters of each cluster are obtained. Finally, η and ς are used to evaluate the object heating system. This application reveals that the descriptive data mining techniques combined with professional knowledge can successfully identify the on-demand parameters from the historical data of heat source.

Suggested Citation

  • Huang, Ke & Yuan, Jianjuan & Zhou, Zhihua & Zheng, Xuejing, 2022. "Analysis and evaluation of heat source data of large-scale heating system based on descriptive data mining techniques," Energy, Elsevier, vol. 251(C).
  • Handle: RePEc:eee:energy:v:251:y:2022:i:c:s036054422200737x
    DOI: 10.1016/j.energy.2022.123834
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422200737X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123834?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dotzauer, Erik, 2002. "Simple model for prediction of loads in district-heating systems," Applied Energy, Elsevier, vol. 73(3-4), pages 277-284, November.
    2. Xue, Puning & Jiang, Yi & Zhou, Zhigang & Chen, Xin & Fang, Xiumu & Liu, Jing, 2019. "Multi-step ahead forecasting of heat load in district heating systems using machine learning algorithms," Energy, Elsevier, vol. 188(C).
    3. Luis Hernández & Carlos Baladrón & Javier M. Aguiar & Belén Carro & Antonio Sánchez-Esguevillas, 2012. "Classification and Clustering of Electricity Demand Patterns in Industrial Parks," Energies, MDPI, vol. 5(12), pages 1-14, December.
    4. McLoughlin, Fintan & Duffy, Aidan & Conlon, Michael, 2015. "A clustering approach to domestic electricity load profile characterisation using smart metering data," Applied Energy, Elsevier, vol. 141(C), pages 190-199.
    5. Zheng, Xinye & Wei, Chu & Qin, Ping & Guo, Jin & Yu, Yihua & Song, Feng & Chen, Zhanming, 2014. "Characteristics of residential energy consumption in China: Findings from a household survey," Energy Policy, Elsevier, vol. 75(C), pages 126-135.
    6. Xue, Puning & Zhou, Zhigang & Fang, Xiumu & Chen, Xin & Liu, Lin & Liu, Yaowen & Liu, Jing, 2017. "Fault detection and operation optimization in district heating substations based on data mining techniques," Applied Energy, Elsevier, vol. 205(C), pages 926-940.
    7. Xue, Guixiang & Qi, Chengying & Li, Han & Kong, Xiangfei & Song, Jiancai, 2020. "Heating load prediction based on attention long short term memory: A case study of Xingtai," Energy, Elsevier, vol. 203(C).
    8. Dahl, Magnus & Brun, Adam & Andresen, Gorm B., 2017. "Using ensemble weather predictions in district heating operation and load forecasting," Applied Energy, Elsevier, vol. 193(C), pages 455-465.
    9. Goia, Aldo & May, Caterina & Fusai, Gianluca, 2010. "Functional clustering and linear regression for peak load forecasting," International Journal of Forecasting, Elsevier, vol. 26(4), pages 700-711, October.
    10. Fang, Tingting & Lahdelma, Risto, 2016. "Evaluation of a multiple linear regression model and SARIMA model in forecasting heat demand for district heating system," Applied Energy, Elsevier, vol. 179(C), pages 544-552.
    11. Yuan, Jianjuan & Zhou, Zhihua & Huang, Ke & Han, Zhao & Wang, Chendong & Lu, Shilei, 2021. "Analysis and evaluation of the operation data for achieving an on-demand heating consumption prediction model of district heating substation," Energy, Elsevier, vol. 214(C).
    12. Protić, Milan & Shamshirband, Shahaboddin & Anisi, Mohammad Hossein & Petković, Dalibor & Mitić, Dragan & Raos, Miomir & Arif, Muhammad & Alam, Khubaib Amjad, 2015. "Appraisal of soft computing methods for short term consumers' heat load prediction in district heating systems," Energy, Elsevier, vol. 82(C), pages 697-704.
    13. Wang, Yaran & You, Shijun & Zhang, Huan & Zheng, Wandong & Zheng, Xuejing & Miao, Qingwei, 2017. "Hydraulic performance optimization of meshed district heating network with multiple heat sources," Energy, Elsevier, vol. 126(C), pages 603-621.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Du, Han & Zhou, Xinlei & Nord, Natasa & Carden, Yale & Ma, Zhenjun, 2023. "A new data mining strategy for performance evaluation of a shared energy recovery system integrated with data centres and district heating networks," Energy, Elsevier, vol. 285(C).
    2. Sun, Chunhua & Yuan, Lingyu & Cao, Shanshan & Xia, Guoqiang & Liu, Yanan & Wu, Xiangdong, 2023. "Identifying supply-demand mismatches in district heating system based on association rule mining," Energy, Elsevier, vol. 280(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuan, Jianjuan & Huang, Ke & Han, Zhao & Wang, Chendong & Lu, Shilei & Zhou, Zhihua, 2022. "Evaluation of the operation data for improving the prediction accuracy of heating parameters in heating substation," Energy, Elsevier, vol. 238(PB).
    2. Yuan, Jianjuan & Zhou, Zhihua & Tang, Huajie & Wang, Chendong & Lu, Shilei & Han, Zhao & Zhang, Ji & Sheng, Ying, 2020. "Identification heat user behavior for improving the accuracy of heating load prediction model based on wireless on-off control system," Energy, Elsevier, vol. 199(C).
    3. Yuan, Jianjuan & Huang, Ke & Han, Zhao & Zhou, Zhihua & Lu, Shilei, 2021. "A new feedback predictive model for improving the operation efficiency of heating station based on indoor temperature," Energy, Elsevier, vol. 222(C).
    4. Xue, Puning & Jiang, Yi & Zhou, Zhigang & Chen, Xin & Fang, Xiumu & Liu, Jing, 2019. "Multi-step ahead forecasting of heat load in district heating systems using machine learning algorithms," Energy, Elsevier, vol. 188(C).
    5. Yuan, Jianjuan & Zhou, Zhihua & Huang, Ke & Han, Zhao & Wang, Chendong & Lu, Shilei, 2021. "Analysis and evaluation of the operation data for achieving an on-demand heating consumption prediction model of district heating substation," Energy, Elsevier, vol. 214(C).
    6. Lumbreras, Mikel & Garay-Martinez, Roberto & Arregi, Beñat & Martin-Escudero, Koldobika & Diarce, Gonzalo & Raud, Margus & Hagu, Indrek, 2022. "Data driven model for heat load prediction in buildings connected to District Heating by using smart heat meters," Energy, Elsevier, vol. 239(PD).
    7. Yuan, Jianjuan & Huang, Ke & Lu, Shilei & Zhang, Ji & Han, Zhao & Zhou, Zhihua, 2022. "Analysis of influencing factors on heat consumption of large residential buildings with different occupancy rates-Tianjin case study," Energy, Elsevier, vol. 238(PC).
    8. Huang, Ke & Lu, Shilei & Han, Zhao & Yuan, Jianjuan, 2023. "Research on heat consumption detection, restoration and prediction methods for discontinuous heating substation," Energy, Elsevier, vol. 266(C).
    9. Magnus Dahl & Adam Brun & Oliver S. Kirsebom & Gorm B. Andresen, 2018. "Improving Short-Term Heat Load Forecasts with Calendar and Holiday Data," Energies, MDPI, vol. 11(7), pages 1-16, June.
    10. Ma, Weiwu & Fang, Song & Liu, Gang & Zhou, Ruoyu, 2017. "Modeling of district load forecasting for distributed energy system," Applied Energy, Elsevier, vol. 204(C), pages 181-205.
    11. Gu, Jihao & Wang, Jin & Qi, Chengying & Min, Chunhua & Sundén, Bengt, 2018. "Medium-term heat load prediction for an existing residential building based on a wireless on-off control system," Energy, Elsevier, vol. 152(C), pages 709-718.
    12. Liu, Zhikai & Zhang, Huan & Wang, Yaran & You, Shijun & Dai, Ting & Jiang, Yan, 2024. "Evaluation of the controllability of multi-family building with radiator heating systems: A frequency domain approach," Energy, Elsevier, vol. 294(C).
    13. Vogler–Finck, P.J.C. & Bacher, P. & Madsen, H., 2017. "Online short-term forecast of greenhouse heat load using a weather forecast service," Applied Energy, Elsevier, vol. 205(C), pages 1298-1310.
    14. F. Marta L. Di Lascio & Andrea Menapace & Maurizio Righetti, 2020. "Joint and conditional dependence modelling of peak district heating demand and outdoor temperature: a copula-based approach," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(2), pages 373-395, June.
    15. Chung, Won Hee & Gu, Yeong Hyeon & Yoo, Seong Joon, 2022. "District heater load forecasting based on machine learning and parallel CNN-LSTM attention," Energy, Elsevier, vol. 246(C).
    16. Zhang, Yunfei & Zhou, Zhihua & Liu, Junwei & Yuan, Jianjuan, 2022. "Data augmentation for improving heating load prediction of heating substation based on TimeGAN," Energy, Elsevier, vol. 260(C).
    17. Sun, Chunhua & Liu, Yanan & Gao, Xiaoyu & Wang, Jinda & Yang, Lan & Qi, Chengyong, 2022. "Research on control strategy integrated with characteristics of user's energy-saving behavior of district heating system," Energy, Elsevier, vol. 245(C).
    18. Yuan, Jianjuan & Wang, Chendong & Zhou, Zhihua, 2019. "Study on refined control and prediction model of district heating station based on support vector machine," Energy, Elsevier, vol. 189(C).
    19. Sun, Chunhua & Yuan, Lingyu & Cao, Shanshan & Xia, Guoqiang & Liu, Yanan & Wu, Xiangdong, 2023. "Identifying supply-demand mismatches in district heating system based on association rule mining," Energy, Elsevier, vol. 280(C).
    20. Rongheng Lin & Budan Wu & Yun Su, 2018. "An Adaptive Weighted Pearson Similarity Measurement Method for Load Curve Clustering," Energies, MDPI, vol. 11(9), pages 1-17, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:251:y:2022:i:c:s036054422200737x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.