The Use of Real Energy Consumption Data in Characterising Residential Energy Demand with an Inventory of UK Datasets
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Viegas, Joaquim L. & Vieira, Susana M. & Melício, R. & Mendes, V.M.F. & Sousa, João M.C., 2016. "Classification of new electricity customers based on surveys and smart metering data," Energy, Elsevier, vol. 107(C), pages 804-817.
- Watson, S.D. & Lomas, K.J. & Buswell, R.A., 2019. "Decarbonising domestic heating: What is the peak GB demand?," Energy Policy, Elsevier, vol. 126(C), pages 533-544.
- McLoughlin, Fintan & Duffy, Aidan & Conlon, Michael, 2015. "A clustering approach to domestic electricity load profile characterisation using smart metering data," Applied Energy, Elsevier, vol. 141(C), pages 190-199.
- Semple, Sally & Jenkins, David, 2020. "Variation of energy performance certificate assessments in the European Union," Energy Policy, Elsevier, vol. 137(C).
- Kavousian, Amir & Rajagopal, Ram & Fischer, Martin, 2013. "Determinants of residential electricity consumption: Using smart meter data to examine the effect of climate, building characteristics, appliance stock, and occupants' behavior," Energy, Elsevier, vol. 55(C), pages 184-194.
- Yunbo Yang & Rongling Li & Tao Huang, 2020. "Smart Meter Data Analysis of a Building Cluster for Heating Load Profile Quantification and Peak Load Shifting," Energies, MDPI, vol. 13(17), pages 1-20, August.
- Love, Jenny & Smith, Andrew Z.P. & Watson, Stephen & Oikonomou, Eleni & Summerfield, Alex & Gleeson, Colin & Biddulph, Phillip & Chiu, Lai Fong & Wingfield, Jez & Martin, Chris & Stone, Andy & Lowe, R, 2017. "The addition of heat pump electricity load profiles to GB electricity demand: Evidence from a heat pump field trial," Applied Energy, Elsevier, vol. 204(C), pages 332-342.
- Bagge, Hans & Johansson, Dennis, 2011. "Measurements of household electricity and domestic hot water use in dwellings and the effect of different monitoring time resolution," Energy, Elsevier, vol. 36(5), pages 2943-2951.
- Francesco Mancini & Benedetto Nastasi, 2019. "Energy Retrofitting Effects on the Energy Flexibility of Dwellings," Energies, MDPI, vol. 12(14), pages 1-19, July.
- Hamilton, Ian G. & Steadman, Philip J. & Bruhns, Harry & Summerfield, Alex J. & Lowe, Robert, 2013. "Energy efficiency in the British housing stock: Energy demand and the Homes Energy Efficiency Database," Energy Policy, Elsevier, vol. 60(C), pages 462-480.
- Stankovic, L. & Stankovic, V. & Liao, J. & Wilson, C., 2016. "Measuring the energy intensity of domestic activities from smart meter data," Applied Energy, Elsevier, vol. 183(C), pages 1565-1580.
- Trotta, Gianluca, 2020. "An empirical analysis of domestic electricity load profiles: Who consumes how much and when?," Applied Energy, Elsevier, vol. 275(C).
- Beckel, Christian & Sadamori, Leyna & Staake, Thorsten & Santini, Silvia, 2014. "Revealing household characteristics from smart meter data," Energy, Elsevier, vol. 78(C), pages 397-410.
- Jenkins, David & Simpson, Sophie & Peacock, Andrew, 2017. "Investigating the consistency and quality of EPC ratings and assessments," Energy, Elsevier, vol. 138(C), pages 480-489.
- Wiesmann, Daniel & Lima Azevedo, Inês & Ferrão, Paulo & Fernández, John E., 2011. "Residential electricity consumption in Portugal: Findings from top-down and bottom-up models," Energy Policy, Elsevier, vol. 39(5), pages 2772-2779, May.
- Alexander Martin Tureczek & Per Sieverts Nielsen, 2017. "Structured Literature Review of Electricity Consumption Classification Using Smart Meter Data," Energies, MDPI, vol. 10(5), pages 1-19, April.
- Räsänen, Teemu & Voukantsis, Dimitrios & Niska, Harri & Karatzas, Kostas & Kolehmainen, Mikko, 2010. "Data-based method for creating electricity use load profiles using large amount of customer-specific hourly measured electricity use data," Applied Energy, Elsevier, vol. 87(11), pages 3538-3545, November.
- Summerfield, A.J. & Oreszczyn, T. & Palmer, J. & Hamilton, I.G. & Li, F.G.N. & Crawley, J. & Lowe, R.J., 2019. "What do empirical findings reveal about modelled energy demand and energy ratings? Comparisons of gas consumption across the English residential sector," Energy Policy, Elsevier, vol. 129(C), pages 997-1007.
- Torriti, Jacopo, 2020. "Temporal aggregation: Time use methodologies applied to residential electricity demand," Utilities Policy, Elsevier, vol. 64(C).
- Carrie Armel, K. & Gupta, Abhay & Shrimali, Gireesh & Albert, Adrian, 2013. "Is disaggregation the holy grail of energy efficiency? The case of electricity," Energy Policy, Elsevier, vol. 52(C), pages 213-234.
- Huebner, Gesche M. & Hamilton, Ian & Chalabi, Zaid & Shipworth, David & Oreszczyn, Tadj, 2015. "Explaining domestic energy consumption – The comparative contribution of building factors, socio-demographics, behaviours and attitudes," Applied Energy, Elsevier, vol. 159(C), pages 589-600.
- Satre-Meloy, Aven & Diakonova, Marina & Grünewald, Philipp, 2020. "Cluster analysis and prediction of residential peak demand profiles using occupant activity data," Applied Energy, Elsevier, vol. 260(C).
- Jenny Crawley & Despina Manouseli & Peter Mallaburn & Cliff Elwell, 2022. "An Empirical Energy Demand Flexibility Metric for Residential Properties," Energies, MDPI, vol. 15(14), pages 1-18, July.
- Jenny Crawley & Phillip Biddulph & Paul J. Northrop & Jez Wingfield & Tadj Oreszczyn & Cliff Elwell, 2019. "Quantifying the Measurement Error on England and Wales EPC Ratings," Energies, MDPI, vol. 12(18), pages 1-19, September.
- Westermann, Paul & Deb, Chirag & Schlueter, Arno & Evins, Ralph, 2020. "Unsupervised learning of energy signatures to identify the heating system and building type using smart meter data," Applied Energy, Elsevier, vol. 264(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Alexander Jüstel & Elias Humm & Eileen Herbst & Frank Strozyk & Peter Kukla & Rolf Bracke, 2024. "Unveiling the Spatial Distribution of Heat Demand in North-West-Europe Compiled with National Heat Consumption Data," Energies, MDPI, vol. 17(2), pages 1-36, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Roberts, Mike B. & Haghdadi, Navid & Bruce, Anna & MacGill, Iain, 2019. "Characterisation of Australian apartment electricity demand and its implications for low-carbon cities," Energy, Elsevier, vol. 180(C), pages 242-257.
- Gianluca Trotta & Kirsten Gram-Hanssen & Pernille Lykke Jørgensen, 2020. "Heterogeneity of Electricity Consumption Patterns in Vulnerable Households," Energies, MDPI, vol. 13(18), pages 1-17, September.
- Alexander Tureczek & Per Sieverts Nielsen & Henrik Madsen, 2018. "Electricity Consumption Clustering Using Smart Meter Data," Energies, MDPI, vol. 11(4), pages 1-18, April.
- Cansino, José M. & Dugo, Víctor & Gálvez-Ruiz, David & Román-Collado, Rocío, 2023. "What drove electricity consumption in the residential sector during the SARS-CoV-2 confinement? A special focus on university students in southern Spain," Energy, Elsevier, vol. 262(PB).
- Wen, Hanguan & Liu, Xiufeng & Yang, Ming & Lei, Bo & Xu, Cheng & Chen, Zhe, 2024. "A novel approach for identifying customer groups for personalized demand-side management services using household socio-demographic data," Energy, Elsevier, vol. 286(C).
- Markovič, Rene & Gosak, Marko & Grubelnik, Vladimir & Marhl, Marko & Virtič, Peter, 2019. "Data-driven classification of residential energy consumption patterns by means of functional connectivity networks," Applied Energy, Elsevier, vol. 242(C), pages 506-515.
- Jacqueline Nicole Adams & Zsófia Deme Bélafi & Miklós Horváth & János Balázs Kocsis & Tamás Csoknyai, 2021. "How Smart Meter Data Analysis Can Support Understanding the Impact of Occupant Behavior on Building Energy Performance: A Comprehensive Review," Energies, MDPI, vol. 14(9), pages 1-23, April.
- Alexander Martin Tureczek & Per Sieverts Nielsen, 2017. "Structured Literature Review of Electricity Consumption Classification Using Smart Meter Data," Energies, MDPI, vol. 10(5), pages 1-19, April.
- Gouveia, João Pedro & Seixas, Júlia & Mestre, Ana, 2017. "Daily electricity consumption profiles from smart meters - Proxies of behavior for space heating and cooling," Energy, Elsevier, vol. 141(C), pages 108-122.
- Yildiz, B. & Bilbao, J.I. & Dore, J. & Sproul, A.B., 2017. "Recent advances in the analysis of residential electricity consumption and applications of smart meter data," Applied Energy, Elsevier, vol. 208(C), pages 402-427.
- Jieyi Kang & David Reiner, 2021.
"Identifying residential consumption patterns using data-mining techniques: A large-scale study of smart meter data in Chengdu, China,"
Working Papers
EPRG2114, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
- Kang, J. & Reiner, D., 2021. "Identifying residential consumption patterns using data-mining techniques: A large-scale study of smart meter data in Chengdu, China," Cambridge Working Papers in Economics 2143, Faculty of Economics, University of Cambridge.
- Satre-Meloy, Aven & Diakonova, Marina & Grünewald, Philipp, 2020. "Cluster analysis and prediction of residential peak demand profiles using occupant activity data," Applied Energy, Elsevier, vol. 260(C).
- Anders Rhiger Hansen & Daniel Leiria & Hicham Johra & Anna Marszal-Pomianowska, 2022. "Who Produces the Peaks? Household Variation in Peak Energy Demand for Space Heating and Domestic Hot Water," Energies, MDPI, vol. 15(24), pages 1-23, December.
- Trotta, Gianluca, 2020. "An empirical analysis of domestic electricity load profiles: Who consumes how much and when?," Applied Energy, Elsevier, vol. 275(C).
- Shimoda, Yoshiyuki & Yamaguchi, Yohei & Iwafune, Yumiko & Hidaka, Kazuyoshi & Meier, Alan & Yagita, Yoshie & Kawamoto, Hisaki & Nishikiori, Soichi, 2020. "Energy demand science for a decarbonized society in the context of the residential sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
- Pullinger, Martin & Zapata-Webborn, Ellen & Kilgour, Jonathan & Elam, Simon & Few, Jessica & Goddard, Nigel & Hanmer, Clare & McKenna, Eoghan & Oreszczyn, Tadj & Webb, Lynda, 2024. "Capturing variation in daily energy demand profiles over time with cluster analysis in British homes (September 2019 – August 2022)," Applied Energy, Elsevier, vol. 360(C).
- Jieyi Kang & David Reiner, 2021.
"Machine Learning on residential electricity consumption: Which households are more responsive to weather?,"
Working Papers
EPRG2113, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
- Kang, J. & Reiner, D., 2021. "Machine Learning on residential electricity consumption: Which households are more responsive to weather?," Cambridge Working Papers in Economics 2142, Faculty of Economics, University of Cambridge.
- Guo, Peiyang & Lam, Jacqueline C.K. & Li, Victor O.K., 2019. "Drivers of domestic electricity users’ price responsiveness: A novel machine learning approach," Applied Energy, Elsevier, vol. 235(C), pages 900-913.
- Wen, Lulu & Zhou, Kaile & Yang, Shanlin & Li, Lanlan, 2018. "Compression of smart meter big data: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 59-69.
- Li, Jianbin & Chen, Zhiqiang & Cheng, Long & Liu, Xiufeng, 2022. "Energy data generation with Wasserstein Deep Convolutional Generative Adversarial Networks," Energy, Elsevier, vol. 257(C).
More about this item
Keywords
residential energy demand; real energy consumption data; energy demand dataset application; energy policy;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:16:p:6069-:d:1220605. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.