IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v180y2019icp50-60.html
   My bibliography  Save this article

A parametric bootstrap algorithm for cluster number determination of load pattern categorization

Author

Listed:
  • Luo, Xing
  • Zhu, Xu
  • Lim, Eng Gee

Abstract

The latest development of smart grid technologies gives rise to big load data and requires load pattern categorization (LPC). How to determine a precise cluster number and choose an appropriate clustering algorithm are critical and still remain challenging in LPC. In this work, we propose a novel parametric bootstrap (PB) algorithm to address the cluster number determination problem in load pattern analysis. The proposed PB algorithm is more robust against dimensionality of data and more applicable for the load demand data which is usually of high dimensionality. The PB algorithm is also general and independent of data type, resulting in a more precise cluster number determined than existing methods with little fluctuation. Moreover, an effective cascade clustering scheme is proposed to categorize load demand data and analyze load patterns, based on the PB algorithm and the K-means++ clustering algorithm. The results indicate the feasibility and the superiority of the proposed approach.

Suggested Citation

  • Luo, Xing & Zhu, Xu & Lim, Eng Gee, 2019. "A parametric bootstrap algorithm for cluster number determination of load pattern categorization," Energy, Elsevier, vol. 180(C), pages 50-60.
  • Handle: RePEc:eee:energy:v:180:y:2019:i:c:p:50-60
    DOI: 10.1016/j.energy.2019.04.089
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219307236
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.04.089?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Regina Nuzzo, 2014. "Scientific method: Statistical errors," Nature, Nature, vol. 506(7487), pages 150-152, February.
    2. McLoughlin, Fintan & Duffy, Aidan & Conlon, Michael, 2015. "A clustering approach to domestic electricity load profile characterisation using smart metering data," Applied Energy, Elsevier, vol. 141(C), pages 190-199.
    3. Ronald L. Wasserstein & Nicole A. Lazar, 2016. "The ASA's Statement on p -Values: Context, Process, and Purpose," The American Statistician, Taylor & Francis Journals, vol. 70(2), pages 129-133, May.
    4. Chicco, Gianfranco, 2012. "Overview and performance assessment of the clustering methods for electrical load pattern grouping," Energy, Elsevier, vol. 42(1), pages 68-80.
    5. Yu, Jie & Chen, Kuilin & Mori, Junichi & Rashid, Mudassir M., 2013. "A Gaussian mixture copula model based localized Gaussian process regression approach for long-term wind speed prediction," Energy, Elsevier, vol. 61(C), pages 673-686.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Valdes, Javier & Masip Macia, Yunesky & Dorner, Wolfgang & Ramirez Camargo, Luis, 2021. "Unsupervised grouping of industrial electricity demand profiles: Synthetic profiles for demand-side management applications," Energy, Elsevier, vol. 215(PA).
    2. Luo, Xing & Zhang, Dongxiao & Zhu, Xu, 2022. "Combining transfer learning and constrained long short-term memory for power generation forecasting of newly-constructed photovoltaic plants," Renewable Energy, Elsevier, vol. 185(C), pages 1062-1077.
    3. Joey Blumberg & Gary Thompson, 2022. "Nonparametric segmentation methods: Applications of unsupervised machine learning and revealed preference," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(3), pages 976-998, May.
    4. Yuya Tanigawa & Narayanan Krishnan & Eitaro Oomine & Atushi Yona & Hiroshi Takahashi & Tomonobu Senjyu, 2023. "Clustering Method for Load Demand to Shorten the Time of Annual Simulation," Energies, MDPI, vol. 16(5), pages 1-22, February.
    5. Luo, Xing & Zhang, Dongxiao & Zhu, Xu, 2021. "Deep learning based forecasting of photovoltaic power generation by incorporating domain knowledge," Energy, Elsevier, vol. 225(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jyotirmoy Sarkar, 2018. "Will P†Value Triumph over Abuses and Attacks?," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 7(4), pages 66-71, July.
    2. Zhou, Kaile & Yang, Changhui & Shen, Jianxin, 2017. "Discovering residential electricity consumption patterns through smart-meter data mining: A case study from China," Utilities Policy, Elsevier, vol. 44(C), pages 73-84.
    3. Wen, Hanguan & Liu, Xiufeng & Yang, Ming & Lei, Bo & Xu, Cheng & Chen, Zhe, 2024. "A novel approach for identifying customer groups for personalized demand-side management services using household socio-demographic data," Energy, Elsevier, vol. 286(C).
    4. Capozzoli, Alfonso & Piscitelli, Marco Savino & Brandi, Silvio & Grassi, Daniele & Chicco, Gianfranco, 2018. "Automated load pattern learning and anomaly detection for enhancing energy management in smart buildings," Energy, Elsevier, vol. 157(C), pages 336-352.
    5. Rongheng Lin & Budan Wu & Yun Su, 2018. "An Adaptive Weighted Pearson Similarity Measurement Method for Load Curve Clustering," Energies, MDPI, vol. 11(9), pages 1-17, September.
    6. Maurizio Canavari & Andreas C. Drichoutis & Jayson L. Lusk & Rodolfo M. Nayga, Jr., 2018. "How to run an experimental auction: A review of recent advances," Working Papers 2018-5, Agricultural University of Athens, Department Of Agricultural Economics.
    7. Russo, Marianna & Bertsch, Valentin, 2020. "A looming revolution: Implications of self-generation for the risk exposure of retailers," Energy Economics, Elsevier, vol. 92(C).
    8. Robbert Claeys & Hakim Azaioud & Rémy Cleenwerck & Jos Knockaert & Jan Desmet, 2020. "A Novel Feature Set for Low-Voltage Consumers, Based on the Temporal Dependence of Consumption and Peak Demands," Energies, MDPI, vol. 14(1), pages 1-24, December.
    9. Tang, Rui & Yildiz, Baran & Leong, Philip H.W. & Vassallo, Anthony & Dore, Jonathon, 2019. "Residential battery sizing model using net meter energy data clustering," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    10. Michalakopoulos, Vasilis & Sarmas, Elissaios & Papias, Ioannis & Skaloumpakas, Panagiotis & Marinakis, Vangelis & Doukas, Haris, 2024. "A machine learning-based framework for clustering residential electricity load profiles to enhance demand response programs," Applied Energy, Elsevier, vol. 361(C).
    11. Rajabi, Amin & Eskandari, Mohsen & Ghadi, Mojtaba Jabbari & Li, Li & Zhang, Jiangfeng & Siano, Pierluigi, 2020. "A comparative study of clustering techniques for electrical load pattern segmentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    12. Fu, Xin & Zeng, Xiao-Jun & Feng, Pengpeng & Cai, Xiuwen, 2018. "Clustering-based short-term load forecasting for residential electricity under the increasing-block pricing tariffs in China," Energy, Elsevier, vol. 165(PB), pages 76-89.
    13. Jeffrey D Blume & Lucy D’Agostino McGowan & William D Dupont & Robert A Greevy Jr., 2018. "Second-generation p-values: Improved rigor, reproducibility, & transparency in statistical analyses," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-17, March.
    14. Rongheng Lin & Fangchun Yang & Mingyuan Gao & Budan Wu & Yingying Zhao, 2019. "AUD-MTS: An Abnormal User Detection Approach Based on Power Load Multi-Step Clustering with Multiple Time Scales," Energies, MDPI, vol. 12(16), pages 1-19, August.
    15. Steckley, Andrew & Steckley, Noah, 2024. "Subtle Signs of Scribal Intent in the Voynich Manuscript," OSF Preprints syu3n, Center for Open Science.
    16. Johnstone, David, 2022. "Accounting research and the significance test crisis," CRITICAL PERSPECTIVES ON ACCOUNTING, Elsevier, vol. 89(C).
    17. Yang, Ting & Ren, Minglun & Zhou, Kaile, 2018. "Identifying household electricity consumption patterns: A case study of Kunshan, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 861-868.
    18. Roberts, Mike B. & Haghdadi, Navid & Bruce, Anna & MacGill, Iain, 2019. "Characterisation of Australian apartment electricity demand and its implications for low-carbon cities," Energy, Elsevier, vol. 180(C), pages 242-257.
    19. Wang, Yanmin & Li, Zhiwei & Liu, Junjie & Lu, Xuan & Zhao, Laifu & Zhao, Yan & Feng, Yongtao, 2024. "Analyzing daily change patterns of indoor temperature in district heating systems: A clustering and regression approach," Applied Energy, Elsevier, vol. 358(C).
    20. Gouveia, João Pedro & Seixas, Júlia & Mestre, Ana, 2017. "Daily electricity consumption profiles from smart meters - Proxies of behavior for space heating and cooling," Energy, Elsevier, vol. 141(C), pages 108-122.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:180:y:2019:i:c:p:50-60. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.