Dealing with multiple decades of hourly wind and PV time series in energy models: A comparison of methods to reduce time resolution and the planning implications of inter-annual variability
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2017.03.051
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Mena, Rodrigo & Hennebel, Martin & Li, Yan-Fu & Zio, Enrico, 2014. "Self-adaptable hierarchical clustering analysis and differential evolution for optimal integration of renewable distributed generation," Applied Energy, Elsevier, vol. 133(C), pages 388-402.
- Nahmmacher, Paul & Schmid, Eva & Hirth, Lion & Knopf, Brigitte, 2016. "Carpe diem: A novel approach to select representative days for long-term power system modeling," Energy, Elsevier, vol. 112(C), pages 430-442.
- Haller, Markus & Ludig, Sylvie & Bauer, Nico, 2012. "Decarbonization scenarios for the EU and MENA power system: Considering spatial distribution and short term dynamics of renewable generation," Energy Policy, Elsevier, vol. 47(C), pages 282-290.
- Rodriguez, Rolando A. & Becker, Sarah & Greiner, Martin, 2015. "Cost-optimal design of a simplified, highly renewable pan-European electricity system," Energy, Elsevier, vol. 83(C), pages 658-668.
- Richard Loulou & Maryse Labriet, 2008. "ETSAP-TIAM: the TIMES integrated assessment model Part I: Model structure," Computational Management Science, Springer, vol. 5(1), pages 7-40, February.
- Hennig, Christian, 2007. "Cluster-wise assessment of cluster stability," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 258-271, September.
- Pfenninger, Stefan & Keirstead, James, 2015. "Renewables, nuclear, or fossil fuels? Scenarios for Great Britain’s power system considering costs, emissions and energy security," Applied Energy, Elsevier, vol. 152(C), pages 83-93.
- McLoughlin, Fintan & Duffy, Aidan & Conlon, Michael, 2015. "A clustering approach to domestic electricity load profile characterisation using smart metering data," Applied Energy, Elsevier, vol. 141(C), pages 190-199.
- Räsänen, Teemu & Voukantsis, Dimitrios & Niska, Harri & Karatzas, Kostas & Kolehmainen, Mikko, 2010. "Data-based method for creating electricity use load profiles using large amount of customer-specific hourly measured electricity use data," Applied Energy, Elsevier, vol. 87(11), pages 3538-3545, November.
- Richard Loulou, 2008. "ETSAP-TIAM: the TIMES integrated assessment model. part II: mathematical formulation," Computational Management Science, Springer, vol. 5(1), pages 41-66, February.
- Hsu, David, 2015. "Comparison of integrated clustering methods for accurate and stable prediction of building energy consumption data," Applied Energy, Elsevier, vol. 160(C), pages 153-163.
- Staffell, Iain & Pfenninger, Stefan, 2016. "Using bias-corrected reanalysis to simulate current and future wind power output," Energy, Elsevier, vol. 114(C), pages 1224-1239.
- Rhodes, Joshua D. & Cole, Wesley J. & Upshaw, Charles R. & Edgar, Thomas F. & Webber, Michael E., 2014. "Clustering analysis of residential electricity demand profiles," Applied Energy, Elsevier, vol. 135(C), pages 461-471.
- Schroeder, Andreas & Oei, Pao-Yu & Sander, Aram & Hankel, Lisa & Laurisch, Lilian Charlotte, 2013. "The integration of renewable energies into the German transmission grid—A scenario comparison," Energy Policy, Elsevier, vol. 61(C), pages 140-150.
- Pina, André & Silva, Carlos & Ferrão, Paulo, 2011. "Modeling hourly electricity dynamics for policy making in long-term scenarios," Energy Policy, Elsevier, vol. 39(9), pages 4692-4702, September.
- Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
- Ludig, Sylvie & Haller, Markus & Schmid, Eva & Bauer, Nico, 2011. "Fluctuating renewables in a long-term climate change mitigation strategy," Energy, Elsevier, vol. 36(11), pages 6674-6685.
- Volker Krey, 2014. "Global energy-climate scenarios and models: a review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(4), pages 363-383, July.
- Pfenninger, Stefan & Staffell, Iain, 2016. "Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data," Energy, Elsevier, vol. 114(C), pages 1251-1265.
- Baringo, L. & Conejo, A.J., 2013. "Correlated wind-power production and electric load scenarios for investment decisions," Applied Energy, Elsevier, vol. 101(C), pages 475-482.
- Staffell, Iain & Green, Richard, 2014. "How does wind farm performance decline with age?," Renewable Energy, Elsevier, vol. 66(C), pages 775-786.
- Haydt, Gustavo & Leal, Vítor & Pina, André & Silva, Carlos A., 2011. "The relevance of the energy resource dynamics in the mid/long-term energy planning models," Renewable Energy, Elsevier, vol. 36(11), pages 3068-3074.
- Ridley, Barbara & Boland, John & Lauret, Philippe, 2010. "Modelling of diffuse solar fraction with multiple predictors," Renewable Energy, Elsevier, vol. 35(2), pages 478-483.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ringkjøb, Hans-Kristian & Haugan, Peter M. & Seljom, Pernille & Lind, Arne & Wagner, Fabian & Mesfun, Sennai, 2020. "Short-term solar and wind variability in long-term energy system models - A European case study," Energy, Elsevier, vol. 209(C).
- Staffell, Iain & Pfenninger, Stefan, 2018. "The increasing impact of weather on electricity supply and demand," Energy, Elsevier, vol. 145(C), pages 65-78.
- Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
- Amorim, Filipa & Pina, André & Gerbelová, Hana & Pereira da Silva, Patrícia & Vasconcelos, Jorge & Martins, Victor, 2014. "Electricity decarbonisation pathways for 2050 in Portugal: A TIMES (The Integrated MARKAL-EFOM System) based approach in closed versus open systems modelling," Energy, Elsevier, vol. 69(C), pages 104-112.
- Hsu, David, 2015. "Comparison of integrated clustering methods for accurate and stable prediction of building energy consumption data," Applied Energy, Elsevier, vol. 160(C), pages 153-163.
- Pfenninger, Stefan & Keirstead, James, 2015. "Renewables, nuclear, or fossil fuels? Scenarios for Great Britain’s power system considering costs, emissions and energy security," Applied Energy, Elsevier, vol. 152(C), pages 83-93.
- Clemens Gerbaulet & Casimir Lorenz, 2017. "dynELMOD: A Dynamic Investment and Dispatch Model for the Future European Electricity Market," Data Documentation 88, DIW Berlin, German Institute for Economic Research.
- Sachs, Julia & Moya, Diego & Giarola, Sara & Hawkes, Adam, 2019. "Clustered spatially and temporally resolved global heat and cooling energy demand in the residential sector," Applied Energy, Elsevier, vol. 250(C), pages 48-62.
- Maximilian Hoffmann & Leander Kotzur & Detlef Stolten & Martin Robinius, 2020. "A Review on Time Series Aggregation Methods for Energy System Models," Energies, MDPI, vol. 13(3), pages 1-61, February.
- Prina, Matteo Giacomo & Nastasi, Benedetto & Groppi, Daniele & Misconel, Steffi & Garcia, Davide Astiaso & Sparber, Wolfram, 2022. "Comparison methods of energy system frameworks, models and scenario results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
- Backe, Stian & Zwickl-Bernhard, Sebastian & Schwabeneder, Daniel & Auer, Hans & Korpås, Magnus & Tomasgard, Asgeir, 2022. "Impact of energy communities on the European electricity and heating system decarbonization pathway: Comparing local and global flexibility responses," Applied Energy, Elsevier, vol. 323(C).
- Ringkjøb, Hans-Kristian & Haugan, Peter M. & Solbrekke, Ida Marie, 2018. "A review of modelling tools for energy and electricity systems with large shares of variable renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 440-459.
- Satre-Meloy, Aven & Diakonova, Marina & Grünewald, Philipp, 2020. "Cluster analysis and prediction of residential peak demand profiles using occupant activity data," Applied Energy, Elsevier, vol. 260(C).
- Bianchi, Emilio & Guozden, Tomás & Kozulj, Roberto, 2022. "Assessing low frequency variations in solar and wind power and their climatic teleconnections," Renewable Energy, Elsevier, vol. 190(C), pages 560-571.
- Zerrahn, Alexander & Schill, Wolf-Peter, 2017.
"Long-run power storage requirements for high shares of renewables: review and a new model,"
Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1518-1534.
- Alexander Zerrahn & Wolf-Peter Schill, 2015. "A Greenfield Model to Evaluate Long-Run Power Storage Requirements for High Shares of Renewables," Discussion Papers of DIW Berlin 1457, DIW Berlin, German Institute for Economic Research.
- Li, Wenqiang & Gong, Guangcai & Fan, Houhua & Peng, Pei & Chun, Liang & Fang, Xi, 2021. "A clustering-based approach for “cross-scale” load prediction on building level in HVAC systems," Applied Energy, Elsevier, vol. 282(PB).
- Pina, André & Silva, Carlos A. & Ferrão, Paulo, 2013. "High-resolution modeling framework for planning electricity systems with high penetration of renewables," Applied Energy, Elsevier, vol. 112(C), pages 215-223.
- DeCarolis, Joseph & Daly, Hannah & Dodds, Paul & Keppo, Ilkka & Li, Francis & McDowall, Will & Pye, Steve & Strachan, Neil & Trutnevyte, Evelina & Usher, Will & Winning, Matthew & Yeh, Sonia & Zeyring, 2017. "Formalizing best practice for energy system optimization modelling," Applied Energy, Elsevier, vol. 194(C), pages 184-198.
- Collins, Seán & Deane, John Paul & Poncelet, Kris & Panos, Evangelos & Pietzcker, Robert C. & Delarue, Erik & Ó Gallachóir, Brian Pádraig, 2017. "Integrating short term variations of the power system into integrated energy system models: A methodological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 839-856.
- Henrik C. Bylling & Salvador Pineda & Trine K. Boomsma, 2020. "The impact of short-term variability and uncertainty on long-term power planning," Annals of Operations Research, Springer, vol. 284(1), pages 199-223, January.
More about this item
Keywords
High-resolution energy modeling; Time series data; Variable renewable generation; Modeling methods;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:197:y:2017:i:c:p:1-13. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.