Identifying Home System of Practices for Energy Use with K-Means Clustering Techniques
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- McLoughlin, Fintan & Duffy, Aidan & Conlon, Michael, 2015. "A clustering approach to domestic electricity load profile characterisation using smart metering data," Applied Energy, Elsevier, vol. 141(C), pages 190-199.
- Trotta, Gianluca, 2020. "An empirical analysis of domestic electricity load profiles: Who consumes how much and when?," Applied Energy, Elsevier, vol. 275(C).
- Yilmaz, S. & Chambers, J. & Patel, M.K., 2019. "Comparison of clustering approaches for domestic electricity load profile characterisation - Implications for demand side management," Energy, Elsevier, vol. 180(C), pages 665-677.
- Tim Kurz & Benjamin Gardner & Bas Verplanken & Charles Abraham, 2015. "Habitual behaviors or patterns of practice? Explaining and changing repetitive climate‐relevant actions," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 6(1), pages 113-128, January.
- Stephenson, Janet & Barton, Barry & Carrington, Gerry & Gnoth, Daniel & Lawson, Rob & Thorsnes, Paul, 2010. "Energy cultures: A framework for understanding energy behaviours," Energy Policy, Elsevier, vol. 38(10), pages 6120-6129, October.
- Afzalan, Milad & Jazizadeh, Farrokh, 2019. "Residential loads flexibility potential for demand response using energy consumption patterns and user segments," Applied Energy, Elsevier, vol. 254(C).
- García, Sebastián & Parejo, Antonio & Personal, Enrique & Ignacio Guerrero, Juan & Biscarri, Félix & León, Carlos, 2021. "A retrospective analysis of the impact of the COVID-19 restrictions on energy consumption at a disaggregated level," Applied Energy, Elsevier, vol. 287(C).
- Martin Hand & Elizabeth Shove & Dale Southerton, 2005. "Explaining Showering: A Discussion of the Material, Conventional, and Temporal Dimensions of Practice," Sociological Research Online, , vol. 10(2), pages 101-113, July.
- Anderson, Ben & Torriti, Jacopo, 2018. "Explaining shifts in UK electricity demand using time use data from 1974 to 2014," Energy Policy, Elsevier, vol. 123(C), pages 544-557.
- Gouveia, João Pedro & Seixas, Júlia & Mestre, Ana, 2017. "Daily electricity consumption profiles from smart meters - Proxies of behavior for space heating and cooling," Energy, Elsevier, vol. 141(C), pages 108-122.
- Hahn, Heiko & Meyer-Nieberg, Silja & Pickl, Stefan, 2009. "Electric load forecasting methods: Tools for decision making," European Journal of Operational Research, Elsevier, vol. 199(3), pages 902-907, December.
- Morvaj, Boran & Evins, Ralph & Carmeliet, Jan, 2017. "Decarbonizing the electricity grid: The impact on urban energy systems, distribution grids and district heating potential," Applied Energy, Elsevier, vol. 191(C), pages 125-140.
- Jessica K. Breadsell & Joshua J. Byrne & Gregory M. Morrison, 2019. "Household Energy and Water Practices Change Post-Occupancy in an Australian Low-Carbon Development," Sustainability, MDPI, vol. 11(20), pages 1-20, October.
- Tim Chatterton & Charlie Wilson, 2014. "The 'Four Dimensions of Behaviour' framework: a tool for characterising behaviours to help design better interventions," Transportation Planning and Technology, Taylor & Francis Journals, vol. 37(1), pages 38-61, February.
- Charrad, Malika & Ghazzali, Nadia & Boiteau, Véronique & Niknafs, Azam, 2014. "NbClust: An R Package for Determining the Relevant Number of Clusters in a Data Set," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 61(i06).
- Watson, Matt, 2012. "How theories of practice can inform transition to a decarbonised transport system," Journal of Transport Geography, Elsevier, vol. 24(C), pages 488-496.
- McKenna, Eoghan & Richardson, Ian & Thomson, Murray, 2012. "Smart meter data: Balancing consumer privacy concerns with legitimate applications," Energy Policy, Elsevier, vol. 41(C), pages 807-814.
- Margot Pellegrino & Carole Wernert & Angéline Chartier, 2022. "Social Housing Net-Zero Energy Renovations With Energy Performance Contract: Incorporating Occupants’ Behaviour," Urban Planning, Cogitatio Press, vol. 7(2), pages 5-19.
- Tang, Wenjun & Wang, Hao & Lee, Xian-Long & Yang, Hong-Tzer, 2022. "Machine learning approach to uncovering residential energy consumption patterns based on socioeconomic and smart meter data," Energy, Elsevier, vol. 240(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Troy Malatesta & Qilin Li & Jessica K. Breadsell & Christine Eon, 2023. "Distinguishing Household Groupings within a Precinct Based on Energy Usage Patterns Using Machine Learning Analysis," Energies, MDPI, vol. 16(10), pages 1-25, May.
- Marlena Piekut & Kamil Piekut, 2022. "Changes in Patterns of Consumer Spending in European Households," Sustainability, MDPI, vol. 14(19), pages 1-25, October.
- Laura Höpfl & Maximilian Grimlitza & Isabella Lang & Maria Wirzberger, 2024. "Promoting sustainable behavior: addressing user clusters through targeted incentives," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-12, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jessica K. Breadsell & Christine Eon & Gregory M. Morrison, 2019. "Understanding Resource Consumption in the Home, Community and Society through Behaviour and Social Practice Theories," Sustainability, MDPI, vol. 11(22), pages 1-18, November.
- Troy Malatesta & Gregory M. Morrison & Jessica K. Breadsell & Christine Eon, 2023. "A Systematic Literature Review of the Interplay between Renewable Energy Systems and Occupant Practices," Sustainability, MDPI, vol. 15(12), pages 1-27, June.
- Wen, Hanguan & Liu, Xiufeng & Yang, Ming & Lei, Bo & Xu, Cheng & Chen, Zhe, 2024. "A novel approach for identifying customer groups for personalized demand-side management services using household socio-demographic data," Energy, Elsevier, vol. 286(C).
- Gianluca Trotta & Kirsten Gram-Hanssen & Pernille Lykke Jørgensen, 2020. "Heterogeneity of Electricity Consumption Patterns in Vulnerable Households," Energies, MDPI, vol. 13(18), pages 1-17, September.
- Troy Malatesta & Qilin Li & Jessica K. Breadsell & Christine Eon, 2023. "Distinguishing Household Groupings within a Precinct Based on Energy Usage Patterns Using Machine Learning Analysis," Energies, MDPI, vol. 16(10), pages 1-25, May.
- Ruhang, Xu, 2020. "Efficient clustering for aggregate loads: An unsupervised pretraining based method," Energy, Elsevier, vol. 210(C).
- Shi, Zhengyu & Wu, Libo & Zhou, Yang, 2023. "Predicting household energy consumption in an aging society," Applied Energy, Elsevier, vol. 352(C).
- Do-Hyeon Ryu & Ryu-Hee Kim & Seung-Hyun Choi & Kwang-Jae Kim & Young Myoung Ko & Young-Jin Kim & Minseok Song & Dong Gu Choi, 2020. "Utilizing Electricity Consumption Data to Assess the Noise Discomfort Caused by Electrical Appliances between Neighbors: A Case Study of a Campus Apartment Building," Sustainability, MDPI, vol. 12(20), pages 1-16, October.
- Yildiz, B. & Bilbao, J.I. & Dore, J. & Sproul, A.B., 2017. "Recent advances in the analysis of residential electricity consumption and applications of smart meter data," Applied Energy, Elsevier, vol. 208(C), pages 402-427.
- Ku, Arthur Lin & Qiu, Yueming (Lucy) & Lou, Jiehong & Nock, Destenie & Xing, Bo, 2022. "Changes in hourly electricity consumption under COVID mandates: A glance to future hourly residential power consumption pattern with remote work in Arizona," Applied Energy, Elsevier, vol. 310(C).
- Palaniappan, Somasundaram & Karuppannan, Sundararaju & Velusamy, Durgadevi, 2024. "Categorization of Indian residential consumers electrical energy consumption pattern using clustering and classification techniques," Energy, Elsevier, vol. 289(C).
- Eccarius, Timo & Leung, Abraham & Shen, Chung-Wei & Burke, Matthew & Lu, Chung-Cheng, 2021. "Prospects for shared electric velomobility: Profiling potential adopters at a multi-campus university," Journal of Transport Geography, Elsevier, vol. 96(C).
- Mishra, Kakuli & Basu, Srinka & Maulik, Ujjwal, 2022. "Load profile mining using directed weighted graphs with application towards demand response management," Applied Energy, Elsevier, vol. 311(C).
- Li, Han & Johra, Hicham & de Andrade Pereira, Flavia & Hong, Tianzhen & Le Dréau, Jérôme & Maturo, Anthony & Wei, Mingjun & Liu, Yapan & Saberi-Derakhtenjani, Ali & Nagy, Zoltan & Marszal-Pomianowska,, 2023. "Data-driven key performance indicators and datasets for building energy flexibility: A review and perspectives," Applied Energy, Elsevier, vol. 343(C).
- Michalakopoulos, Vasilis & Sarmas, Elissaios & Papias, Ioannis & Skaloumpakas, Panagiotis & Marinakis, Vangelis & Doukas, Haris, 2024. "A machine learning-based framework for clustering residential electricity load profiles to enhance demand response programs," Applied Energy, Elsevier, vol. 361(C).
- Lesley Thomson & David Jenkins, 2023. "The Use of Real Energy Consumption Data in Characterising Residential Energy Demand with an Inventory of UK Datasets," Energies, MDPI, vol. 16(16), pages 1-29, August.
- Jieyi Kang & David Reiner, 2021.
"Identifying residential consumption patterns using data-mining techniques: A large-scale study of smart meter data in Chengdu, China,"
Working Papers
EPRG2114, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
- Kang, J. & Reiner, D., 2021. "Identifying residential consumption patterns using data-mining techniques: A large-scale study of smart meter data in Chengdu, China," Cambridge Working Papers in Economics 2143, Faculty of Economics, University of Cambridge.
- Jacqueline Nicole Adams & Zsófia Deme Bélafi & Miklós Horváth & János Balázs Kocsis & Tamás Csoknyai, 2021. "How Smart Meter Data Analysis Can Support Understanding the Impact of Occupant Behavior on Building Energy Performance: A Comprehensive Review," Energies, MDPI, vol. 14(9), pages 1-23, April.
- Li, Jianbin & Chen, Zhiqiang & Cheng, Long & Liu, Xiufeng, 2022. "Energy data generation with Wasserstein Deep Convolutional Generative Adversarial Networks," Energy, Elsevier, vol. 257(C).
- Li, Tong & Wang, Zhaohua & Zhao, Wenhui, 2022. "Comparison and application potential analysis of autoencoder-based electricity pattern mining algorithms for large-scale demand response," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
More about this item
Keywords
home system of practice; net-zero energy home; automation; energy management; social practice theory; behaviour; machine learning;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9017-:d:869365. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.