IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v194y2017icp658-666.html
   My bibliography  Save this article

Identifying regime shifts in the US electricity market based on price fluctuations

Author

Listed:
  • Sun, Mei
  • Li, Juan
  • Gao, Cuixia
  • Han, Dun

Abstract

Electricity power is a basic industrial component which plays an important role in the economy of a nation. In this paper, the correlations evolution of electricity prices among 50 states and the District of Columbia are studied based on random matrix theory (RMT) Four regime shifts are identified from January 1990 to August 2014 in the U.S. residential, commercial and industrial electricity markets. Then, the genetic algorithm (GA) is applied to analyze the clusters of evolution. The results show that, the correlations of electricity prices increased continually in the three departments. However, it decreased in 2012 which further confirms its sensitivity to fuel market. Besides, four regime shifts exist in the three departments though the different times of occurrence caused by price level. And, the fluctuation of community evolution is consistent with four regime shifts. The final part is a summary of the research analyzed and results.

Suggested Citation

  • Sun, Mei & Li, Juan & Gao, Cuixia & Han, Dun, 2017. "Identifying regime shifts in the US electricity market based on price fluctuations," Applied Energy, Elsevier, vol. 194(C), pages 658-666.
  • Handle: RePEc:eee:appene:v:194:y:2017:i:c:p:658-666
    DOI: 10.1016/j.apenergy.2016.04.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916304895
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.04.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hung, Ming-Feng & Huang, Tai-Hsin, 2015. "Dynamic demand for residential electricity in Taiwan under seasonality and increasing-block pricing," Energy Economics, Elsevier, vol. 48(C), pages 168-177.
    2. Druce, Donald J., 2007. "Modelling the transition from cost-based to bid-based pricing in a deregulated electricity-market," Applied Energy, Elsevier, vol. 84(12), pages 1210-1225, December.
    3. Billio, Monica & Getmansky, Mila & Lo, Andrew W. & Pelizzon, Loriana, 2012. "Econometric measures of connectedness and systemic risk in the finance and insurance sectors," Journal of Financial Economics, Elsevier, vol. 104(3), pages 535-559.
    4. Upton, J. & Murphy, M. & Shalloo, L. & Groot Koerkamp, P.W.G. & De Boer, I.J.M., 2015. "Assessing the impact of changes in the electricity price structure on dairy farm energy costs," Applied Energy, Elsevier, vol. 137(C), pages 1-8.
    5. Wang, Zhaohua & Zhang, Bin & Zhang, Yixiang, 2012. "Determinants of public acceptance of tiered electricity price reform in China: Evidence from four urban cities," Applied Energy, Elsevier, vol. 91(1), pages 235-244.
    6. Sandoval, Leonidas & Franca, Italo De Paula, 2012. "Correlation of financial markets in times of crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 187-208.
    7. Barigozzi, Matteo & Fagiolo, Giorgio & Mangioni, Giuseppe, 2011. "Identifying the community structure of the international-trade multi-network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 2051-2066.
    8. Walawalkar, Rahul & Blumsack, Seth & Apt, Jay & Fernands, Stephen, 2008. "An economic welfare analysis of demand response in the PJM electricity market," Energy Policy, Elsevier, vol. 36(10), pages 3692-3702, October.
    9. Zhao, Xiaoli & Lyon, Thomas P. & Song, Cui, 2012. "Lurching towards markets for power: China’s electricity policy 1985–2007," Applied Energy, Elsevier, vol. 94(C), pages 148-155.
    10. McLoughlin, Fintan & Duffy, Aidan & Conlon, Michael, 2015. "A clustering approach to domestic electricity load profile characterisation using smart metering data," Applied Energy, Elsevier, vol. 141(C), pages 190-199.
    11. Ketter, Wolfgang & Collins, John & Reddy, Prashant, 2013. "Power TAC: A competitive economic simulation of the smart grid," Energy Economics, Elsevier, vol. 39(C), pages 262-270.
    12. Cappers, Peter & Goldman, Charles & Kathan, David, 2010. "Demand response in U.S. electricity markets: Empirical evidence," Energy, Elsevier, vol. 35(4), pages 1526-1535.
    13. Tian Qiu & Bo Zheng & Guang Chen, 2010. "Adaptive financial networks with static and dynamic thresholds," Papers 1002.3432, arXiv.org.
    14. Rhodes, Joshua D. & Cole, Wesley J. & Upshaw, Charles R. & Edgar, Thomas F. & Webber, Michael E., 2014. "Clustering analysis of residential electricity demand profiles," Applied Energy, Elsevier, vol. 135(C), pages 461-471.
    15. Zhong, Weiqiong & An, Haizhong & Gao, Xiangyun & Sun, Xiaoqi, 2014. "The evolution of communities in the international oil trade network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 42-52.
    16. Herter, Karen & Wayland, Seth, 2010. "Residential response to critical-peak pricing of electricity: California evidence," Energy, Elsevier, vol. 35(4), pages 1561-1567.
    17. Wang, Yong & Li, Lin, 2015. "Time-of-use electricity pricing for industrial customers: A survey of U.S. utilities," Applied Energy, Elsevier, vol. 149(C), pages 89-103.
    18. Du, Gang & Lin, Wei & Sun, Chuanwang & Zhang, Dingzhong, 2015. "Residential electricity consumption after the reform of tiered pricing for household electricity in China," Applied Energy, Elsevier, vol. 157(C), pages 276-283.
    19. Castagneto-Gissey, G. & Chavez, M. & De Vico Fallani, F., 2014. "Dynamic Granger-causal networks of electricity spot prices: A novel approach to market integration," Energy Economics, Elsevier, vol. 44(C), pages 422-432.
    20. Giorgio Castagneto-Gissey & Mario Chavez & Fabrizio de Vico Fallani, 2014. "Dynamic Granger-causal networks of electricity spot prices: A novel approach to market integration," Post-Print hal-01023418, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wakiyama, Takako & Zusman, Eric, 2021. "The impact of electricity market reform and subnational climate policy on carbon dioxide emissions across the United States: A path analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    2. Gautam, Tej K. & Paudel, Krishna P., 2018. "Estimating sectoral demands for electricity using the pooled mean group method," Applied Energy, Elsevier, vol. 231(C), pages 54-67.
    3. Lin, Jianing & Bao, Minglei & Liang, Ziyang & Sang, Maosheng & Ding, Yi, 2022. "Spatio-temporal evaluation of electricity price risk considering multiple uncertainties under extreme cold weather," Applied Energy, Elsevier, vol. 328(C).
    4. Reimers, Andrew & Cole, Wesley & Frew, Bethany, 2019. "The impact of planning reserve margins in long-term planning models of the electricity sector," Energy Policy, Elsevier, vol. 125(C), pages 1-8.
    5. Shubo Hu & Zhengnan Gao & Jing Wu & Yangyang Ge & Jiajue Li & Lianyong Zhang & Jinsong Liu & Hui Sun, 2022. "Time-Interval-Varying Optimal Power Dispatch Strategy Based on Net Load Time-Series Characteristics," Energies, MDPI, vol. 15(4), pages 1-23, February.
    6. Meng, Fanyi & Bai, Yang & Jin, Jingliang, 2021. "An advanced real-time dispatching strategy for a distributed energy system based on the reinforcement learning algorithm," Renewable Energy, Elsevier, vol. 178(C), pages 13-24.
    7. Dan Yu & Bart Dewancker & Fanyue Qian, 2020. "The Identification and Rebound Effect Evaluation of Equipment Energy Efficiency Improvement Policy: A Case Study on Japan’s Top Runner Policy," Energies, MDPI, vol. 13(17), pages 1-18, August.
    8. Feras Alasali & Husam Foudeh & Esraa Mousa Ali & Khaled Nusair & William Holderbaum, 2021. "Forecasting and Modelling the Uncertainty of Low Voltage Network Demand and the Effect of Renewable Energy Sources," Energies, MDPI, vol. 14(8), pages 1-31, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Changhui & Meng, Chen & Zhou, Kaile, 2018. "Residential electricity pricing in China: The context of price-based demand response," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2870-2878.
    2. Wang, Chen & Zhou, Kaile & Yang, Shanlin, 2017. "A review of residential tiered electricity pricing in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 533-543.
    3. Huan Chen & Lixin Tian & Minggang Wang & Zaili Zhen, 2017. "Analysis of the Dynamic Evolutionary Behavior of American Heating Oil Spot and Futures Price Fluctuation Networks," Sustainability, MDPI, vol. 9(4), pages 1-29, April.
    4. Gang-Jin Wang & Chi Xie & Kaijian He & H. Eugene Stanley, 2017. "Extreme risk spillover network: application to financial institutions," Quantitative Finance, Taylor & Francis Journals, vol. 17(9), pages 1417-1433, September.
    5. Ling, Yu-Xiu & Xie, Chi & Wang, Gang-Jin, 2022. "Interconnectedness between convertible bonds and underlying stocks in the Chinese capital market: A multilayer network perspective," Emerging Markets Review, Elsevier, vol. 52(C).
    6. Wang, Yong & Li, Lin, 2015. "Time-of-use electricity pricing for industrial customers: A survey of U.S. utilities," Applied Energy, Elsevier, vol. 149(C), pages 89-103.
    7. Yan, Guan & Trück, Stefan, 2020. "A dynamic network analysis of spot electricity prices in the Australian national electricity market," Energy Economics, Elsevier, vol. 92(C).
    8. Li, Yao & Fan, Jin & Zhao, Dingtao & Wu, Yanrui & Li, Jun, 2016. "Tiered gasoline pricing: A personal carbon trading perspective," Energy Policy, Elsevier, vol. 89(C), pages 194-201.
    9. Jiang, Bo & Farid, Amro M. & Youcef-Toumi, Kamal, 2015. "Demand side management in a day-ahead wholesale market: A comparison of industrial & social welfare approaches," Applied Energy, Elsevier, vol. 156(C), pages 642-654.
    10. Sun, Chuanwang, 2015. "An empirical case study about the reform of tiered pricing for household electricity in China," Applied Energy, Elsevier, vol. 160(C), pages 383-389.
    11. Wang, Yong & Li, Lin, 2016. "Critical peak electricity pricing for sustainable manufacturing: Modeling and case studies," Applied Energy, Elsevier, vol. 175(C), pages 40-53.
    12. Ji, Qiang & Bouri, Elie & Roubaud, David & Kristoufek, Ladislav, 2019. "Information interdependence among energy, cryptocurrency and major commodity markets," Energy Economics, Elsevier, vol. 81(C), pages 1042-1055.
    13. Fu, Xin & Zeng, Xiao-Jun & Feng, Pengpeng & Cai, Xiuwen, 2018. "Clustering-based short-term load forecasting for residential electricity under the increasing-block pricing tariffs in China," Energy, Elsevier, vol. 165(PB), pages 76-89.
    14. Wu, Ya & Zhang, Li, 2017. "Evaluation of energy saving effects of tiered electricity pricing and investigation of the energy saving willingness of residents," Energy Policy, Elsevier, vol. 109(C), pages 208-217.
    15. Štefan Bojnec & Alan Križaj, 2021. "Electricity Markets during the Liberalization: The Case of a European Union Country," Energies, MDPI, vol. 14(14), pages 1-21, July.
    16. Ayertey, Winfred & Sharifi, Ayyoob & Yoshida, Yuichiro, 2024. "The impact of increase in block pricing on electricity demand responsiveness: Evidence from Ghana," Energy, Elsevier, vol. 288(C).
    17. Yu, Xinran & Ergan, Semiha, 2022. "Estimating power demand shaving capacity of buildings on an urban scale using extracted demand response profiles through machine learning models," Applied Energy, Elsevier, vol. 310(C).
    18. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    19. Y, Kiguchi & Y, Heo & M, Weeks & R, Choudhary, 2019. "Predicting intra-day load profiles under time-of-use tariffs using smart meter data," Energy, Elsevier, vol. 173(C), pages 959-970.
    20. Sim, Min Kyu & Deng, Shijie & Huo, Xiaoming, 2021. "What can cluster analysis offer in investing? - Measuring structural changes in the investment universe," International Review of Economics & Finance, Elsevier, vol. 71(C), pages 299-315.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:194:y:2017:i:c:p:658-666. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.