A data-driven methodology for enhanced measurement and verification of energy efficiency savings in commercial buildings
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2021.117502
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- McLoughlin, Fintan & Duffy, Aidan & Conlon, Michael, 2015. "A clustering approach to domestic electricity load profile characterisation using smart metering data," Applied Energy, Elsevier, vol. 141(C), pages 190-199.
- Ma, Minda & Cai, Wei & Cai, Weiguang, 2018. "Carbon abatement in China's commercial building sector: A bottom-up measurement model based on Kaya-LMDI methods," Energy, Elsevier, vol. 165(PA), pages 350-368.
- Li, Kehua & Ma, Zhenjun & Robinson, Duane & Ma, Jun, 2018. "Identification of typical building daily electricity usage profiles using Gaussian mixture model-based clustering and hierarchical clustering," Applied Energy, Elsevier, vol. 231(C), pages 331-342.
- Granderson, Jessica & Touzani, Samir & Custodio, Claudine & Sohn, Michael D. & Jump, David & Fernandes, Samuel, 2016. "Accuracy of automated measurement and verification (M&V) techniques for energy savings in commercial buildings," Applied Energy, Elsevier, vol. 173(C), pages 296-308.
- Capozzoli, Alfonso & Piscitelli, Marco Savino & Brandi, Silvio & Grassi, Daniele & Chicco, Gianfranco, 2018. "Automated load pattern learning and anomaly detection for enhancing energy management in smart buildings," Energy, Elsevier, vol. 157(C), pages 336-352.
- Grillone, Benedetto & Danov, Stoyan & Sumper, Andreas & Cipriano, Jordi & Mor, Gerard, 2020. "A review of deterministic and data-driven methods to quantify energy efficiency savings and to predict retrofitting scenarios in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
- Fateh Nassim Melzi & Allou Same & Mohamed Haykel Zayani & Latifa Oukhellou, 2017. "A Dedicated Mixture Model for Clustering Smart Meter Data: Identification and Analysis of Electricity Consumption Behaviors," Energies, MDPI, vol. 10(10), pages 1-21, September.
- Ma, Minda & Ma, Xin & Cai, Wei & Cai, Weiguang, 2020. "Low carbon roadmap of residential building sector in China: Historical mitigation and prospective peak," Applied Energy, Elsevier, vol. 273(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Abdurahman Alrobaie & Moncef Krarti, 2022. "A Review of Data-Driven Approaches for Measurement and Verification Analysis of Building Energy Retrofits," Energies, MDPI, vol. 15(21), pages 1-30, October.
- Benedetto Grillone & Gerard Mor & Stoyan Danov & Jordi Cipriano & Florencia Lazzari & Andreas Sumper, 2021. "Baseline Energy Use Modeling and Characterization in Tertiary Buildings Using an Interpretable Bayesian Linear Regression Methodology," Energies, MDPI, vol. 14(17), pages 1-30, September.
- Gao, Yuan & Miyata, Shohei & Akashi, Yasunori, 2023. "How to improve the application potential of deep learning model in HVAC fault diagnosis: Based on pruning and interpretable deep learning method," Applied Energy, Elsevier, vol. 348(C).
- Tzani, Dimitra & Stavrakas, Vassilis & Santini, Marion & Thomas, Samuel & Rosenow, Jan & Flamos, Alexandros, 2022. "Pioneering a performance-based future for energy efficiency: Lessons learnt from a comparative review analysis of pay-for-performance programmes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhan, Sicheng & Liu, Zhaoru & Chong, Adrian & Yan, Da, 2020. "Building categorization revisited: A clustering-based approach to using smart meter data for building energy benchmarking," Applied Energy, Elsevier, vol. 269(C).
- Li, Kehua & Yang, Rebecca Jing & Robinson, Duane & Ma, Jun & Ma, Zhenjun, 2019. "An agglomerative hierarchical clustering-based strategy using Shared Nearest Neighbours and multiple dissimilarity measures to identify typical daily electricity usage profiles of university library b," Energy, Elsevier, vol. 174(C), pages 735-748.
- Liu Yang & Bingyang Han & Zhili Ma & Ting Wang & Yingchao Lin, 2022. "Analysis of the Urban Land Use Efficiency in the New-Type Urbanization Process of China’s Yangtze River Economic Belt," IJERPH, MDPI, vol. 19(13), pages 1-22, July.
- Abdurahman Alrobaie & Moncef Krarti, 2022. "A Review of Data-Driven Approaches for Measurement and Verification Analysis of Building Energy Retrofits," Energies, MDPI, vol. 15(21), pages 1-30, October.
- Zheng, Xuejing & Hu, Fangshu & Wang, Yaran & Zheng, Lijun & Gao, Xinyong & Zhang, Huan & You, Shijun & Xu, Boxiao, 2021. "Leak detection of long-distance district heating pipeline: A hydraulic transient model-based approach," Energy, Elsevier, vol. 237(C).
- Do-Hyeon Ryu & Ryu-Hee Kim & Seung-Hyun Choi & Kwang-Jae Kim & Young Myoung Ko & Young-Jin Kim & Minseok Song & Dong Gu Choi, 2020. "Utilizing Electricity Consumption Data to Assess the Noise Discomfort Caused by Electrical Appliances between Neighbors: A Case Study of a Campus Apartment Building," Sustainability, MDPI, vol. 12(20), pages 1-16, October.
- Li, Kai & Ma, Minda & Xiang, Xiwang & Feng, Wei & Ma, Zhili & Cai, Weiguang & Ma, Xin, 2022. "Carbon reduction in commercial building operations: A provincial retrospection in China," Applied Energy, Elsevier, vol. 306(PB).
- Li, Kehua & Ma, Zhenjun & Robinson, Duane & Ma, Jun, 2018. "Identification of typical building daily electricity usage profiles using Gaussian mixture model-based clustering and hierarchical clustering," Applied Energy, Elsevier, vol. 231(C), pages 331-342.
- Zhang, Shufan & Ma, Minda & Li, Kai & Ma, Zhili & Feng, Wei & Cai, Weiguang, 2022. "Historical carbon abatement in the commercial building operation: China versus the US," Energy Economics, Elsevier, vol. 105(C).
- Rongheng Lin & Fangchun Yang & Mingyuan Gao & Budan Wu & Yingying Zhao, 2019. "AUD-MTS: An Abnormal User Detection Approach Based on Power Load Multi-Step Clustering with Multiple Time Scales," Energies, MDPI, vol. 12(16), pages 1-19, August.
- Xin Yang & Yifei Sima & Yabo Lv & Mingwei Li, 2023. "Research on Influencing Factors of Residential Building Carbon Emissions and Carbon Peak: A Case of Henan Province in China," Sustainability, MDPI, vol. 15(13), pages 1-18, June.
- Hu, Hui & Qi, Shaozhou & Chen, Yuanzhi, 2023. "Using green technology for a better tomorrow: How enterprises and government utilize the carbon trading system and incentive policies," China Economic Review, Elsevier, vol. 78(C).
- Ünal, Berat Berkan & Onaygil, Sermin & Acuner, Ebru & Cin, Rabia, 2022. "Application of energy efficiency obligation scheme for electricity distribution companies in Turkey," Energy Policy, Elsevier, vol. 163(C).
- Chen, Zhelun & O’Neill, Zheng & Wen, Jin & Pradhan, Ojas & Yang, Tao & Lu, Xing & Lin, Guanjing & Miyata, Shohei & Lee, Seungjae & Shen, Chou & Chiosa, Roberto & Piscitelli, Marco Savino & Capozzoli, , 2023. "A review of data-driven fault detection and diagnostics for building HVAC systems," Applied Energy, Elsevier, vol. 339(C).
- Yi Zhang & Tian Lan & Wei Hu, 2023. "A Two-Stage Robust Optimization Microgrid Model Considering Carbon Trading and Demand Response," Sustainability, MDPI, vol. 15(19), pages 1-22, October.
- Xavier Serrano-Guerrero & Guillermo Escrivá-Escrivá & Santiago Luna-Romero & Jean-Michel Clairand, 2020. "A Time-Series Treatment Method to Obtain Electrical Consumption Patterns for Anomalies Detection Improvement in Electrical Consumption Profiles," Energies, MDPI, vol. 13(5), pages 1-23, February.
- Wen, Hanguan & Liu, Xiufeng & Yang, Ming & Lei, Bo & Xu, Cheng & Chen, Zhe, 2024. "A novel approach for identifying customer groups for personalized demand-side management services using household socio-demographic data," Energy, Elsevier, vol. 286(C).
- Rongheng Lin & Budan Wu & Yun Su, 2018. "An Adaptive Weighted Pearson Similarity Measurement Method for Load Curve Clustering," Energies, MDPI, vol. 11(9), pages 1-17, September.
- Gianluca Trotta & Kirsten Gram-Hanssen & Pernille Lykke Jørgensen, 2020. "Heterogeneity of Electricity Consumption Patterns in Vulnerable Households," Energies, MDPI, vol. 13(18), pages 1-17, September.
- Zhang, Yang & Yan, Da & Hu, Shan & Guo, Siyue, 2019. "Modelling of energy consumption and carbon emission from the building construction sector in China, a process-based LCA approach," Energy Policy, Elsevier, vol. 134(C).
More about this item
Keywords
Building energy retrofit; Measurement and verification; Data driven approach; Generalized additive models; Building energy performance; Energy savings estimation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:301:y:2021:i:c:s0306261921008862. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.