IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v270y2020ics0306261920307315.html
   My bibliography  Save this article

Clustering based assessment of cost, security and environmental tradeoffs with possible future electricity generation portfolios

Author

Listed:
  • Tanoto, Yusak
  • Haghdadi, Navid
  • Bruce, Anna
  • MacGill, Iain

Abstract

The electricity sector has a key role to play in the sustainable energy transition. The falling costs of wind and solar PV have added to both the opportunities yet also challenges of balancing sometimes competing industry objectives of costs, security, and environmental impacts. This paper presents novel techniques for assessing possible future industry generation portfolios in three ways: (1) incorporating explicit metrics for energy trilemma objectives into modelling, (2) using the optimization process of evolutionary programming to map the solution space of ‘high performing’, near least-cost, portfolio solutions, and (3) applying boundary min–max cases and clustering to categorize these varied portfolios to better facilitate planning and policy making. We use an open-source evolutionary programming tool, National Electricity Market Optimiser, to assess possible future generation portfolios for Indonesia’s Java-Bali interconnected power system. Our findings highlight the wide range of possible portfolios that might potentially deliver similar total industry costs, and their different security and environmental implications. In particular, additional solar photovoltaic deployment appears a low-risk opportunity to reduce costs and emissions compared to more fossil-fuel oriented mixes. Our novel techniques may be useful for the energy modelling community seeking to better understand and communicate complex, uncertain, and multi-dimensional choices for electricity industry planning.

Suggested Citation

  • Tanoto, Yusak & Haghdadi, Navid & Bruce, Anna & MacGill, Iain, 2020. "Clustering based assessment of cost, security and environmental tradeoffs with possible future electricity generation portfolios," Applied Energy, Elsevier, vol. 270(C).
  • Handle: RePEc:eee:appene:v:270:y:2020:i:c:s0306261920307315
    DOI: 10.1016/j.apenergy.2020.115219
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920307315
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115219?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. McLoughlin, Fintan & Duffy, Aidan & Conlon, Michael, 2015. "A clustering approach to domestic electricity load profile characterisation using smart metering data," Applied Energy, Elsevier, vol. 141(C), pages 190-199.
    2. Malik, Anam & Haghdadi, Navid & MacGill, Iain & Ravishankar, Jayashri, 2019. "Appliance level data analysis of summer demand reduction potential from residential air conditioner control," Applied Energy, Elsevier, vol. 235(C), pages 776-785.
    3. Scott, Ian J. & Carvalho, Pedro M.S. & Botterud, Audun & Silva, Carlos A., 2019. "Clustering representative days for power systems generation expansion planning: Capturing the effects of variable renewables and energy storage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    4. Santos, Maria João & Ferreira, Paula & Araújo, Madalena, 2016. "A methodology to incorporate risk and uncertainty in electricity power planning," Energy, Elsevier, vol. 115(P2), pages 1400-1411.
    5. Kreith, Frank & Norton, Paul & Brown, Daryl, 1990. "A comparison of CO2 emissions from fossil and solar power plants in the United States," Energy, Elsevier, vol. 15(12), pages 1181-1198.
    6. Burke, Paul J. & Widnyana, Jinnie & Anjum, Zeba & Aisbett, Emma & Resosudarmo, Budy & Baldwin, Kenneth G.H., 2019. "Overcoming barriers to solar and wind energy adoption in two Asian giants: India and Indonesia," Energy Policy, Elsevier, vol. 132(C), pages 1216-1228.
    7. Dagoumas, Athanasios S. & Koltsaklis, Nikolaos E., 2019. "Review of models for integrating renewable energy in the generation expansion planning," Applied Energy, Elsevier, vol. 242(C), pages 1573-1587.
    8. Meschede, Henning & Esparcia, Eugene A. & Holzapfel, Peter & Bertheau, Paul & Ang, Rosario C. & Blanco, Ariel C. & Ocon, Joey D., 2019. "On the transferability of smart energy systems on off-grid islands using cluster analysis – A case study for the Philippine archipelago," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    9. Pfenninger, Stefan & Staffell, Iain, 2016. "Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data," Energy, Elsevier, vol. 114(C), pages 1251-1265.
    10. Veldhuis, A.J. & Reinders, A.H.M.E., 2013. "Reviewing the potential and cost-effectiveness of grid-connected solar PV in Indonesia on a provincial level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 315-324.
    11. Gunningham, Neil, 2013. "Managing the energy trilemma: The case of Indonesia," Energy Policy, Elsevier, vol. 54(C), pages 184-193.
    12. Vithayasrichareon, Peerapat & MacGill, Iain F., 2012. "A Monte Carlo based decision-support tool for assessing generation portfolios in future carbon constrained electricity industries," Energy Policy, Elsevier, vol. 41(C), pages 374-392.
    13. Satre-Meloy, Aven & Diakonova, Marina & Grünewald, Philipp, 2020. "Cluster analysis and prediction of residential peak demand profiles using occupant activity data," Applied Energy, Elsevier, vol. 260(C).
    14. Zhou, Yuren & Lork, Clement & Li, Wen-Tai & Yuen, Chau & Keow, Yeong Ming, 2019. "Benchmarking air-conditioning energy performance of residential rooms based on regression and clustering techniques," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    15. Motlagh, Omid & Berry, Adam & O'Neil, Lachlan, 2019. "Clustering of residential electricity customers using load time series," Applied Energy, Elsevier, vol. 237(C), pages 11-24.
    16. Clark, Richard & Zucker, Noah & Urpelainen, Johannes, 2020. "The future of coal-fired power generation in Southeast Asia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    17. Barrington-Leigh, Christopher & Ouliaris, Mark, 2017. "The renewable energy landscape in Canada: A spatial analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 809-819.
    18. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Solbrekke, Ida Marie, 2018. "A review of modelling tools for energy and electricity systems with large shares of variable renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 440-459.
    19. Rhodes, Joshua D. & Cole, Wesley J. & Upshaw, Charles R. & Edgar, Thomas F. & Webber, Michael E., 2014. "Clustering analysis of residential electricity demand profiles," Applied Energy, Elsevier, vol. 135(C), pages 461-471.
    20. Elliston, Ben & MacGill, Iain & Diesendorf, Mark, 2014. "Comparing least cost scenarios for 100% renewable electricity with low emission fossil fuel scenarios in the Australian National Electricity Market," Renewable Energy, Elsevier, vol. 66(C), pages 196-204.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Chao & Lasaulce, Samson & Hennebel, Martin & Saludjian, Lucas & Panciatici, Patrick & Poor, H. Vincent, 2021. "Decision-making oriented clustering: Application to pricing and power consumption scheduling," Applied Energy, Elsevier, vol. 297(C).
    2. Li, Wenqiang & Gong, Guangcai & Fan, Houhua & Peng, Pei & Chun, Liang & Fang, Xi, 2021. "A clustering-based approach for “cross-scale” load prediction on building level in HVAC systems," Applied Energy, Elsevier, vol. 282(PB).
    3. Tanoto, Yusak & Haghdadi, Navid & Bruce, Anna & MacGill, Iain, 2021. "Reliability-cost trade-offs for electricity industry planning with high variable renewable energy penetrations in emerging economies: A case study of Indonesia’s Java-Bali grid," Energy, Elsevier, vol. 227(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tanoto, Yusak & Haghdadi, Navid & Bruce, Anna & MacGill, Iain, 2021. "Reliability-cost trade-offs for electricity industry planning with high variable renewable energy penetrations in emerging economies: A case study of Indonesia’s Java-Bali grid," Energy, Elsevier, vol. 227(C).
    2. Li, Wenqiang & Gong, Guangcai & Fan, Houhua & Peng, Pei & Chun, Liang & Fang, Xi, 2021. "A clustering-based approach for “cross-scale” load prediction on building level in HVAC systems," Applied Energy, Elsevier, vol. 282(PB).
    3. Wen, Hanguan & Liu, Xiufeng & Yang, Ming & Lei, Bo & Xu, Cheng & Chen, Zhe, 2024. "A novel approach for identifying customer groups for personalized demand-side management services using household socio-demographic data," Energy, Elsevier, vol. 286(C).
    4. Gianluca Trotta & Kirsten Gram-Hanssen & Pernille Lykke Jørgensen, 2020. "Heterogeneity of Electricity Consumption Patterns in Vulnerable Households," Energies, MDPI, vol. 13(18), pages 1-17, September.
    5. Seljom, Pernille & Kvalbein, Lisa & Hellemo, Lars & Kaut, Michal & Ortiz, Miguel Muñoz, 2021. "Stochastic modelling of variable renewables in long-term energy models: Dataset, scenario generation & quality of results," Energy, Elsevier, vol. 236(C).
    6. Pfenninger, Stefan, 2017. "Dealing with multiple decades of hourly wind and PV time series in energy models: A comparison of methods to reduce time resolution and the planning implications of inter-annual variability," Applied Energy, Elsevier, vol. 197(C), pages 1-13.
    7. Shan, Rui & Kittner, Noah, 2024. "Allocation of policy resources for energy storage development considering the Inflation Reduction Act," Energy Policy, Elsevier, vol. 184(C).
    8. Zhang, Xiaohai & Ramírez-Mendiola, José Luis & Li, Mingtao & Guo, Liejin, 2022. "Electricity consumption pattern analysis beyond traditional clustering methods: A novel self-adapting semi-supervised clustering method and application case study," Applied Energy, Elsevier, vol. 308(C).
    9. Tang, Wenjun & Wang, Hao & Lee, Xian-Long & Yang, Hong-Tzer, 2022. "Machine learning approach to uncovering residential energy consumption patterns based on socioeconomic and smart meter data," Energy, Elsevier, vol. 240(C).
    10. Cansino, José M. & Dugo, Víctor & Gálvez-Ruiz, David & Román-Collado, Rocío, 2023. "What drove electricity consumption in the residential sector during the SARS-CoV-2 confinement? A special focus on university students in southern Spain," Energy, Elsevier, vol. 262(PB).
    11. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    12. Maximilian Hoffmann & Leander Kotzur & Detlef Stolten & Martin Robinius, 2020. "A Review on Time Series Aggregation Methods for Energy System Models," Energies, MDPI, vol. 13(3), pages 1-61, February.
    13. Wen, Hanguan & Liu, Xiufeng & Yang, Ming & Lei, Bo & Cheng, Xu & Chen, Zhe, 2023. "An energy demand-side management and net metering decision framework," Energy, Elsevier, vol. 271(C).
    14. Mishra, Kakuli & Basu, Srinka & Maulik, Ujjwal, 2022. "Load profile mining using directed weighted graphs with application towards demand response management," Applied Energy, Elsevier, vol. 311(C).
    15. Khan, Waqas & Liao, Juo Yu & Walker, Shalika & Zeiler, Wim, 2022. "Impact assessment of varied data granularities from commercial buildings on exploration and learning mechanism," Applied Energy, Elsevier, vol. 319(C).
    16. Rahman, Arief & Dargusch, Paul & Wadley, David, 2021. "The political economy of oil supply in Indonesia and the implications for renewable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    17. Buchholz, Stefanie & Gamst, Mette & Pisinger, David, 2020. "Sensitivity analysis of time aggregation techniques applied to capacity expansion energy system models," Applied Energy, Elsevier, vol. 269(C).
    18. Gils, Hans Christian & Gardian, Hedda & Kittel, Martin & Schill, Wolf-Peter & Zerrahn, Alexander & Murmann, Alexander & Launer, Jann & Fehler, Alexander & Gaumnitz, Felix & van Ouwerkerk, Jonas & Bußa, 2022. "Modeling flexibility in energy systems — comparison of power sector models based on simplified test cases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    19. Rongheng Lin & Budan Wu & Yun Su, 2018. "An Adaptive Weighted Pearson Similarity Measurement Method for Load Curve Clustering," Energies, MDPI, vol. 11(9), pages 1-17, September.
    20. Russo, Marianna & Bertsch, Valentin, 2020. "A looming revolution: Implications of self-generation for the risk exposure of retailers," Energy Economics, Elsevier, vol. 92(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:270:y:2020:i:c:s0306261920307315. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.