IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v253y2019ic3.html
   My bibliography  Save this article

A data-driven approach to extract operational signatures of HVAC systems and analyze impact on electricity consumption

Author

Listed:
  • Yu, Xinran
  • Ergan, Semiha
  • Dedemen, Gokmen

Abstract

The electricity consumption of Heating Ventilating and Air Conditioning (HVAC) systems has a significant share in the energy consumption of buildings, which account for 75% of total electricity produced in the US. Therefore, improving the energy efficiency in HVAC systems is an essential goal in facility management (FM) industry. Building Automation Systems (BASs) deployed in buildings provide an enormous amount of data on HVAC operations, which can be leveraged to extract hidden knowledge and insights about operational signatures of these systems (i.e., parameter-value pairs set for running the equipment) and their relationship to energy profiles. This study aims to identify critical parameters of HVAC systems that drive the changes in the building energy-use profiles and develop an automated approach for identifying HVAC operational signatures and their energy profiles in buildings. The approach relies on data-driven methodologies and is composed of three major steps: data preprocessing, feature selection, and signature discovery and analysis. The approach was tested on four air handling units (AHUs) in different buildings. The results showed that it is possible to define operational signatures for facility operators to run AHUs at these custom settings and achieve about 30% saving in electric power, given the profiles across the operational signatures.

Suggested Citation

  • Yu, Xinran & Ergan, Semiha & Dedemen, Gokmen, 2019. "A data-driven approach to extract operational signatures of HVAC systems and analyze impact on electricity consumption," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
  • Handle: RePEc:eee:appene:v:253:y:2019:i:c:3
    DOI: 10.1016/j.apenergy.2019.113497
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919311717
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.113497?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. McLoughlin, Fintan & Duffy, Aidan & Conlon, Michael, 2015. "A clustering approach to domestic electricity load profile characterisation using smart metering data," Applied Energy, Elsevier, vol. 141(C), pages 190-199.
    2. Perez-Lombard, Luis & Ortiz, Jose & Maestre, Ismael R., 2011. "The map of energy flow in HVAC systems," Applied Energy, Elsevier, vol. 88(12), pages 5020-5031.
    3. Wang, Shengwei & Cui, Jingtan, 2005. "Sensor-fault detection, diagnosis and estimation for centrifugal chiller systems using principal-component analysis method," Applied Energy, Elsevier, vol. 82(3), pages 197-213, November.
    4. Papadopoulos, Sokratis & Kontokosta, Constantine E., 2019. "Grading buildings on energy performance using city benchmarking data," Applied Energy, Elsevier, vol. 233, pages 244-253.
    5. Ahmadi-Karvigh, Simin & Ghahramani, Ali & Becerik-Gerber, Burcin & Soibelman, Lucio, 2018. "Real-time activity recognition for energy efficiency in buildings," Applied Energy, Elsevier, vol. 211(C), pages 146-160.
    6. Miller, Clayton & Nagy, Zoltán & Schlueter, Arno, 2018. "A review of unsupervised statistical learning and visual analytics techniques applied to performance analysis of non-residential buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1365-1377.
    7. Kusiak, Andrew & Xu, Guanglin & Tang, Fan, 2011. "Optimization of an HVAC system with a strength multi-objective particle-swarm algorithm," Energy, Elsevier, vol. 36(10), pages 5935-5943.
    8. Kusiak, Andrew & Li, Mingyang & Tang, Fan, 2010. "Modeling and optimization of HVAC energy consumption," Applied Energy, Elsevier, vol. 87(10), pages 3092-3102, October.
    9. Rhodes, Joshua D. & Cole, Wesley J. & Upshaw, Charles R. & Edgar, Thomas F. & Webber, Michael E., 2014. "Clustering analysis of residential electricity demand profiles," Applied Energy, Elsevier, vol. 135(C), pages 461-471.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Yanhua & Wang, Ningbo & Shao, Shuangquan & Huang, Congqi & Zhang, Zhentao & Li, Xiaoqiong & Wang, Youdong, 2024. "A review on hybrid physics and data-driven modeling methods applied in air source heat pump systems for energy efficiency improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 204(C).
    2. Zhuang, Dian & Gan, Vincent J.L. & Duygu Tekler, Zeynep & Chong, Adrian & Tian, Shuai & Shi, Xing, 2023. "Data-driven predictive control for smart HVAC system in IoT-integrated buildings with time-series forecasting and reinforcement learning," Applied Energy, Elsevier, vol. 338(C).
    3. Dey, Maitreyee & Rana, Soumya Prakash & Dudley, Sandra, 2021. "Automated terminal unit performance analysis employing x-RBF neural network and associated energy optimisation – A case study based approach," Applied Energy, Elsevier, vol. 298(C).
    4. Khalilnejad, Arash & French, Roger H. & Abramson, Alexis R., 2020. "Data-driven evaluation of HVAC operation and savings in commercial buildings," Applied Energy, Elsevier, vol. 278(C).
    5. Che-Hao Chang & Jason Lin & Jia-Wei Chang & Yu-Shun Huang & Ming-Hsin Lai & Yen-Jen Chang, 2024. "Hybrid Deep Neural Networks with Multi-Tasking for Rice Yield Prediction Using Remote Sensing Data," Agriculture, MDPI, vol. 14(4), pages 1-21, March.
    6. Hong, Yejin & Yoon, Sungmin, 2022. "Holistic Operational Signatures for an energy-efficient district heating substation in buildings," Energy, Elsevier, vol. 250(C).
    7. Hong, Yejin & Yoon, Sungmin & Choi, Sebin, 2023. "Operational signature-based symbolic hierarchical clustering for building energy, operation, and efficiency towards carbon neutrality," Energy, Elsevier, vol. 265(C).
    8. Hyang-A Park & Gilsung Byeon & Wanbin Son & Jongyul Kim & Sungshin Kim, 2023. "Data-Driven Modeling of HVAC Systems for Operation of Virtual Power Plants Using a Digital Twin," Energies, MDPI, vol. 16(20), pages 1-14, October.
    9. Yu, Xinran & Ergan, Semiha, 2022. "Estimating power demand shaving capacity of buildings on an urban scale using extracted demand response profiles through machine learning models," Applied Energy, Elsevier, vol. 310(C).
    10. Elsa Chaerun Nisa & Yean-Der Kuan & Chin-Chang Lai, 2021. "Chiller Optimization Using Data Mining Based on Prediction Model, Clustering and Association Rule Mining," Energies, MDPI, vol. 14(20), pages 1-14, October.
    11. Zhang, Shuyang & Zhang, Lun & Zhang, Xiaosong, 2022. "Clustering based on dynamic time warping to extract typical daily patterns from long-term operation data of a ground source heat pump system," Energy, Elsevier, vol. 249(C).
    12. Li, Bingxu & Cheng, Fanyong & Zhang, Xin & Cui, Can & Cai, Wenjian, 2021. "A novel semi-supervised data-driven method for chiller fault diagnosis with unlabeled data," Applied Energy, Elsevier, vol. 285(C).
    13. Xue, Qi & Jin, Xinqiao & Jia, Zhiyang & Lyu, Yuan & Du, Zhimin, 2024. "Optimal control strategy of multiple chiller system based on background knowledge graph," Applied Energy, Elsevier, vol. 375(C).
    14. Cai, Qingsen & Luo, XingQi & Wang, Peng & Gao, Chunyang & Zhao, Peiyu, 2022. "Hybrid model-driven and data-driven control method based on machine learning algorithm in energy hub and application," Applied Energy, Elsevier, vol. 305(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Xinran & Ergan, Semiha, 2022. "Estimating power demand shaving capacity of buildings on an urban scale using extracted demand response profiles through machine learning models," Applied Energy, Elsevier, vol. 310(C).
    2. Rongjiang Ma & Xianlin Wang & Ming Shan & Nanyang Yu & Shen Yang, 2020. "Recognition of Variable-Speed Equipment in an Air-Conditioning System Using Numerical Analysis of Energy-Consumption Data," Energies, MDPI, vol. 13(18), pages 1-14, September.
    3. Zhou, Kaile & Yang, Changhui & Shen, Jianxin, 2017. "Discovering residential electricity consumption patterns through smart-meter data mining: A case study from China," Utilities Policy, Elsevier, vol. 44(C), pages 73-84.
    4. Wen, Hanguan & Liu, Xiufeng & Yang, Ming & Lei, Bo & Xu, Cheng & Chen, Zhe, 2024. "A novel approach for identifying customer groups for personalized demand-side management services using household socio-demographic data," Energy, Elsevier, vol. 286(C).
    5. Capozzoli, Alfonso & Piscitelli, Marco Savino & Brandi, Silvio & Grassi, Daniele & Chicco, Gianfranco, 2018. "Automated load pattern learning and anomaly detection for enhancing energy management in smart buildings," Energy, Elsevier, vol. 157(C), pages 336-352.
    6. Rongheng Lin & Budan Wu & Yun Su, 2018. "An Adaptive Weighted Pearson Similarity Measurement Method for Load Curve Clustering," Energies, MDPI, vol. 11(9), pages 1-17, September.
    7. Gianluca Trotta & Kirsten Gram-Hanssen & Pernille Lykke Jørgensen, 2020. "Heterogeneity of Electricity Consumption Patterns in Vulnerable Households," Energies, MDPI, vol. 13(18), pages 1-17, September.
    8. Yildiz, B. & Bilbao, J.I. & Dore, J. & Sproul, A.B., 2017. "Recent advances in the analysis of residential electricity consumption and applications of smart meter data," Applied Energy, Elsevier, vol. 208(C), pages 402-427.
    9. Russo, Marianna & Bertsch, Valentin, 2020. "A looming revolution: Implications of self-generation for the risk exposure of retailers," Energy Economics, Elsevier, vol. 92(C).
    10. Sachs, Julia & Moya, Diego & Giarola, Sara & Hawkes, Adam, 2019. "Clustered spatially and temporally resolved global heat and cooling energy demand in the residential sector," Applied Energy, Elsevier, vol. 250(C), pages 48-62.
    11. Robbert Claeys & Hakim Azaioud & Rémy Cleenwerck & Jos Knockaert & Jan Desmet, 2020. "A Novel Feature Set for Low-Voltage Consumers, Based on the Temporal Dependence of Consumption and Peak Demands," Energies, MDPI, vol. 14(1), pages 1-24, December.
    12. Ye, Tinghan & Liu, Shanshan & Kontou, Eleftheria, 2024. "Managed residential electric vehicle charging minimizes electricity bills while meeting driver and community preferences," Transport Policy, Elsevier, vol. 149(C), pages 122-138.
    13. Alexander Tureczek & Per Sieverts Nielsen & Henrik Madsen, 2018. "Electricity Consumption Clustering Using Smart Meter Data," Energies, MDPI, vol. 11(4), pages 1-18, April.
    14. Wang, Xinli & Cai, Wenjian & Yin, Xiaohong, 2017. "A global optimized operation strategy for energy savings in liquid desiccant air conditioning using self-adaptive differential evolutionary algorithm," Applied Energy, Elsevier, vol. 187(C), pages 410-423.
    15. Tanoto, Yusak & Haghdadi, Navid & Bruce, Anna & MacGill, Iain, 2020. "Clustering based assessment of cost, security and environmental tradeoffs with possible future electricity generation portfolios," Applied Energy, Elsevier, vol. 270(C).
    16. Qiu, Dawei & Wang, Yi & Wang, Junkai & Jiang, Chuanwen & Strbac, Goran, 2023. "Personalized retail pricing design for smart metering consumers in electricity market," Applied Energy, Elsevier, vol. 348(C).
    17. Li, Kehua & Ma, Zhenjun & Robinson, Duane & Ma, Jun, 2018. "Identification of typical building daily electricity usage profiles using Gaussian mixture model-based clustering and hierarchical clustering," Applied Energy, Elsevier, vol. 231(C), pages 331-342.
    18. Zhan, Sicheng & Liu, Zhaoru & Chong, Adrian & Yan, Da, 2020. "Building categorization revisited: A clustering-based approach to using smart meter data for building energy benchmarking," Applied Energy, Elsevier, vol. 269(C).
    19. Tang, Rui & Yildiz, Baran & Leong, Philip H.W. & Vassallo, Anthony & Dore, Jonathon, 2019. "Residential battery sizing model using net meter energy data clustering," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    20. Khan, Waqas & Liao, Juo Yu & Walker, Shalika & Zeiler, Wim, 2022. "Impact assessment of varied data granularities from commercial buildings on exploration and learning mechanism," Applied Energy, Elsevier, vol. 319(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:253:y:2019:i:c:3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.