My bibliography
Save this item
Macroeconomic Nowcasting and Forecasting with Big Data
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Danilo Cascaldi-Garcia & Matteo Luciani & Michele Modugno, 2024.
"Lessons from nowcasting GDP across the world,"
Chapters, in: Michael P. Clements & Ana Beatriz Galvão (ed.), Handbook of Research Methods and Applications in Macroeconomic Forecasting, chapter 8, pages 187-217,
Edward Elgar Publishing.
- Danilo Cascaldi-Garcia & Matteo Luciani & Michele Modugno, 2023. "Lessons from Nowcasting GDP across the World," International Finance Discussion Papers 1385, Board of Governors of the Federal Reserve System (U.S.).
- Martin Ellison & Sang Seok Lee & Kevin Hjortshøj O'Rourke, 2024.
"The Ends of 27 Big Depressions,"
American Economic Review, American Economic Association, vol. 114(1), pages 134-168, January.
- Martin Ellison & Sang Seok Lee & Kevin Hjortshøj O'Rourke, 2020. "The Ends of 27 Big Depressions," NBER Working Papers 27586, National Bureau of Economic Research, Inc.
- O'Rourke, Kevin & Ellison, Martin & Lee, Sang Seok, 2020. "The Ends of 27 Big Depressions," CEPR Discussion Papers 15061, C.E.P.R. Discussion Papers.
- Andrii Babii & Eric Ghysels & Jonas Striaukas, 2022.
"Machine Learning Time Series Regressions With an Application to Nowcasting,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(3), pages 1094-1106, June.
- Andrii Babii & Eric Ghysels & Jonas Striaukas, 2020. "Machine Learning Time Series Regressions with an Application to Nowcasting," Papers 2005.14057, arXiv.org, revised Dec 2020.
- Babii, Andrii & Ghysels, Eric & Striaukas, Jonas, 2021. "Machine Learning Time Series Regressions With an Application to Nowcasting," LIDAM Reprints LFIN 2021010, Université catholique de Louvain, Louvain Finance (LFIN).
- Babii, Andrii & Ghysels, Eric & Striaukas, Jonas, 2021. "Machine Learning Time Series Regressions With an Application to Nowcasting," LIDAM Discussion Papers LFIN 2021004, Université catholique de Louvain, Louvain Finance (LFIN).
- Zhang, Qin & Ni, He & Xu, Hao, 2023. "Nowcasting Chinese GDP in a data-rich environment: Lessons from machine learning algorithms," Economic Modelling, Elsevier, vol. 122(C).
- Bańbura, Marta & Belousova, Irina & Bodnár, Katalin & Tóth, Máté Barnabás, 2023. "Nowcasting employment in the euro area," Working Paper Series 2815, European Central Bank.
- Aprigliano, Valentina & Emiliozzi, Simone & Guaitoli, Gabriele & Luciani, Andrea & Marcucci, Juri & Monteforte, Libero, 2023.
"The power of text-based indicators in forecasting Italian economic activity,"
International Journal of Forecasting, Elsevier, vol. 39(2), pages 791-808.
- Valentina Aprigliano & Simone Emiliozzi & Gabriele Guaitoli & Andrea Luciani & Juri Marcucci & Libero Monteforte, 2021. "The power of text-based indicators in forecasting the Italian economic activity," Temi di discussione (Economic working papers) 1321, Bank of Italy, Economic Research and International Relations Area.
- Barbaglia, Luca & Frattarolo, Lorenzo & Onorante, Luca & Pericoli, Filippo Maria & Ratto, Marco & Tiozzo Pezzoli, Luca, 2023.
"Testing big data in a big crisis: Nowcasting under Covid-19,"
International Journal of Forecasting, Elsevier, vol. 39(4), pages 1548-1563.
- Barbaglia, Luca & Frattarolo, Lorenzo & Onorante, Luca & Pericoli, Filippo Maria & Ratto, Marco & Tiozzo Pezzoli, Luca, 2022. "Testing big data in a big crisis: Nowcasting under COVID-19," JRC Working Papers in Economics and Finance 2022-06, Joint Research Centre, European Commission.
- Miranda-Agrippino, Silvia & Ricco, Giovanni, 2018.
"Bayesian Vector Autoregressions,"
The Warwick Economics Research Paper Series (TWERPS)
1159, University of Warwick, Department of Economics.
- Silvia Miranda-Agrippino & Giovanni Ricco, 2018. "Bayesian vector autoregressions," Documents de Travail de l'OFCE 2018-18, Observatoire Francais des Conjonctures Economiques (OFCE).
- Silvia Miranda Agrippino & Giovanni Ricco, 2018. "Bayesian vector autoregressions," Working Papers hal-03458277, HAL.
- Silvia Miranda-Agrippino & Giovanni Ricco, 2018. "Bayesian Vector Autoregressions," Discussion Papers 1808, Centre for Macroeconomics (CFM).
- Miranda-Agrippino, Silvia & Ricco, Giovanni, 2018. "Bayesian vector autoregressions," LSE Research Online Documents on Economics 87393, London School of Economics and Political Science, LSE Library.
- Silvia Miranda Agrippino & Giovanni Ricco, 2018. "Bayesian vector autoregressions," SciencePo Working papers Main hal-03458277, HAL.
- Miranda-Agrippino, Silvia & Ricco, Giovanni, 2018. "Bayesian vector autoregressions," Bank of England working papers 756, Bank of England.
- Görtz, Christoph & Yeromonahos, Mallory, 2022.
"Asymmetries in risk premia, macroeconomic uncertainty and business cycles,"
Journal of Economic Dynamics and Control, Elsevier, vol. 137(C).
- Christoph Görtz & Mallory Yeromonahos, 2019. "Asymmetries in Risk Premia, Macroeconomic Uncertainty and Business Cycles," CESifo Working Paper Series 7959, CESifo.
- Christoph Görtz & Mallory Yeromonahos, 2021. "Asymmetries in Risk Premia, Macroeconomic Uncertainty and Business Cycles," Working Paper series 21-25, Rimini Centre for Economic Analysis.
- Christoph Görtz & Mallory Yeromonahos, 2021. "Asymmetries in risk premia, macroeconomic uncertainty and business cycles," CAMA Working Papers 2021-101, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Donato Ceci & Orest Prifti & Andrea Silvestrini, 2024. "Nowcasting Italian GDP growth: a Factor MIDAS approach," Temi di discussione (Economic working papers) 1446, Bank of Italy, Economic Research and International Relations Area.
- Sokol, Andrej, 2021. "Fan charts 2.0: flexible forecast distributions with expert judgement," Working Paper Series 2624, European Central Bank.
- Jinjing Li & Yogi Vidyattama & Hai Anh La & Riyana Miranti & Denisa M. Sologon, 2022. "Estimating the Impact of Covid-19 and Policy Responses on Australian Income Distribution Using Incomplete Data," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 162(1), pages 1-31, July.
- Abdalla, Ahmed & Carabias, Jose M. & Patatoukas, Panos N., 2021. "The real-time macro content of corporate financial reports: a dynamic factor model approach," LSE Research Online Documents on Economics 108539, London School of Economics and Political Science, LSE Library.
- Pradeep Mishra & Khder Alakkari & Mostafa Abotaleb & Pankaj Kumar Singh & Shilpi Singh & Monika Ray & Soumitra Sankar Das & Umme Habibah Rahman & Ali J. Othman & Nazirya Alexandrovna Ibragimova & Gulf, 2021. "Nowcasting India Economic Growth Using a Mixed-Data Sampling (MIDAS) Model (Empirical Study with Economic Policy Uncertainty–Consumer Prices Index)," Data, MDPI, vol. 6(11), pages 1-15, November.
- Donato Ceci & Andrea Silvestrini, 2023.
"Nowcasting the state of the Italian economy: The role of financial markets,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1569-1593, November.
- Donato Ceci & Andrea Silvestrini, 2022. "Nowcasting the state of the Italian economy: the role of financial markets," Temi di discussione (Economic working papers) 1362, Bank of Italy, Economic Research and International Relations Area.
- Mantas Lukauskas & Vaida Pilinkienė & Jurgita Bruneckienė & Alina Stundžienė & Andrius Grybauskas & Tomas Ruzgas, 2022. "Economic Activity Forecasting Based on the Sentiment Analysis of News," Mathematics, MDPI, vol. 10(19), pages 1-22, September.
- Adams, Patrick A. & Adrian, Tobias & Boyarchenko, Nina & Giannone, Domenico, 2021.
"Forecasting macroeconomic risks,"
International Journal of Forecasting, Elsevier, vol. 37(3), pages 1173-1191.
- Patrick A. Adams & Tobias Adrian & Nina Boyarchenko & Domenico Giannone, 2020. "Forecasting Macroeconomic Risks," Staff Reports 914, Federal Reserve Bank of New York.
- Adrian, Tobias & Adams, Patrick & Boyarchenko, Nina & Giannone, Domenico, 2020. "Forecasting Macroeconomic Risks," CEPR Discussion Papers 14436, C.E.P.R. Discussion Papers.
- Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021.
"Factor extraction using Kalman filter and smoothing: This is not just another survey,"
International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
- Poncela Blanco, Maria Pilar, 2020. "Factor extraction using Kalman filter and smoothing: this is not just another survey," DES - Working Papers. Statistics and Econometrics. WS 30644, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Andrei Dubovik & Adam Elbourne & Bram Hendriks & Mark Kattenberg, 2022. "Forecasting World Trade Using Big Data and Machine Learning Techniques," CPB Discussion Paper 441, CPB Netherlands Bureau for Economic Policy Analysis.
- Jinjing Li & Yogi Vidyattama & Hai Anh La & Riyana Miranti & Denisa M Sologon, 2020. "The Impact of COVID-19 and Policy Responses on Australian Income Distribution and Poverty," Papers 2009.04037, arXiv.org.
- Lyu, Yifei & Nie, Jun & Yang, Shu-Kuei X., 2021.
"Forecasting US economic growth in downturns using cross-country data,"
Economics Letters, Elsevier, vol. 198(C).
- , 2020. "Forecasting U.S. Economic Growth in Downturns Using Cross-Country Data," Research Working Paper RWP 20-09, Federal Reserve Bank of Kansas City.
- Jo~ao B. Assunc{c}~ao & Pedro Afonso Fernandes, 2024. "The Surprising Robustness of Partial Least Squares," Papers 2409.05713, arXiv.org.
- Joan Paredes & Javier J. Pérez & Gabriel Perez Quiros, 2023.
"Fiscal targets. A guide to forecasters?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(4), pages 472-492, June.
- Joan Paredes & Javier J. Pérez & Gabriel Perez-Quirós, 2015. "Fiscal targets. A guide to forecasters?," Working Papers 1508, Banco de España.
- Pérez-Quirós, Gabriel & Pérez, Javier J & Paredes, Joan, 2015. "Fiscal targets. A guide to forecasters?," CEPR Discussion Papers 10553, C.E.P.R. Discussion Papers.
- Pérez Quirós, Gabriel & Pérez, Javier J. & Paredes, Joan, 2015. "Fiscal targets. A guide to forecasters?," Working Paper Series 1834, European Central Bank.
- Dennis Kant & Andreas Pick & Jasper de Winter, 2022. "Nowcasting GDP using machine learning methods," Working Papers 754, DNB.
- James T. E. Chapman & Ajit Desai, 2023.
"Macroeconomic Predictions Using Payments Data and Machine Learning,"
Forecasting, MDPI, vol. 5(4), pages 1-32, November.
- James Chapman & Ajit Desai, 2022. "Macroeconomic Predictions Using Payments Data and Machine Learning," Staff Working Papers 22-10, Bank of Canada.
- James T. E. Chapman & Ajit Desai, 2022. "Macroeconomic Predictions using Payments Data and Machine Learning," Papers 2209.00948, arXiv.org.
- Andrii Babii & Eric Ghysels & Jonas Striaukas, 2024.
"High-Dimensional Granger Causality Tests with an Application to VIX and News,"
Journal of Financial Econometrics, Oxford University Press, vol. 22(3), pages 605-635.
- Andrii Babii & Eric Ghysels & Jonas Striaukas, 2019. "High-Dimensional Granger Causality Tests with an Application to VIX and News," Papers 1912.06307, arXiv.org, revised Feb 2021.
- Ryadh M. Alkhareif & William A. Barnett, 2022. "Nowcasting Real GDP for Saudi Arabia1," Open Economies Review, Springer, vol. 33(2), pages 333-345, April.
- James Chapman & Ajit Desai, 2021. "Using Payments Data to Nowcast Macroeconomic Variables During the Onset of COVID-19," Staff Working Papers 21-2, Bank of Canada.
- Barış Soybilgen & Ege Yazgan, 2021. "Nowcasting US GDP Using Tree-Based Ensemble Models and Dynamic Factors," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 387-417, January.
- David Kohns & Arnab Bhattacharjee, 2020.
"Nowcasting Growth using Google Trends Data: A Bayesian Structural Time Series Model,"
Papers
2011.00938, arXiv.org, revised May 2022.
- Bhattacharjee, Arnab & Kohns, David, 2022. "Nowcasting Growth using Google Trends Data: A Bayesian Structural Time Series Model," National Institute of Economic and Social Research (NIESR) Discussion Papers 538, National Institute of Economic and Social Research.
- Jokubaitis, Saulius & Celov, Dmitrij & Leipus, Remigijus, 2021. "Sparse structures with LASSO through principal components: Forecasting GDP components in the short-run," International Journal of Forecasting, Elsevier, vol. 37(2), pages 759-776.
- Jonas E. Arias & Minchul Shin, 2020. "Tracking U.S. Real GDP Growth During the Pandemic," Economic Insights, Federal Reserve Bank of Philadelphia, vol. 5(3), pages 9-14, September.
- Zhang, Yixiao & Yu, Cindy L. & Li, Haitao, 2022. "Nowcasting GDP Using Dynamic Factor Model with Unknown Number of Factors and Stochastic Volatility: A Bayesian Approach," Econometrics and Statistics, Elsevier, vol. 24(C), pages 75-93.
- Bjarni G. Einarsson, 2024. "Online Monitoring of Policy Optimality," Economics wp95, Department of Economics, Central bank of Iceland.
- Philip ME Garboden, 2019. "Sources and Types of Big Data for Macroeconomic Forecasting," Working Papers 2019-3, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
- Hauber, Philipp, 2021. "How useful is external information from professional forecasters? Conditional forecasts in large factor models," EconStor Preprints 251469, ZBW - Leibniz Information Centre for Economics.
- Cimadomo, Jacopo & Giannone, Domenico & Lenza, Michele & Monti, Francesca & Sokol, Andrej, 2022.
"Nowcasting with large Bayesian vector autoregressions,"
Journal of Econometrics, Elsevier, vol. 231(2), pages 500-519.
- Cimadomo, Jacopo & Giannone, Domenico & Lenza, Michele & Monti, Francesca & Sokol, Andrej, 2020. "Nowcasting with large Bayesian vector autoregressions," Working Paper Series 2453, European Central Bank.
- Lenza, Michele & Cimadomo, Jacopo & Giannone, Domenico & Monti, Francesca & Sokol, Andrej, 2021. "Nowcasting with Large Bayesian Vector Autoregressions," CEPR Discussion Papers 15854, C.E.P.R. Discussion Papers.
- Konstantin Kuck & Karsten Schweikert, 2021. "Forecasting Baden‐Württemberg's GDP growth: MIDAS regressions versus dynamic mixed‐frequency factor models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 861-882, August.
- Jack Fosten & Daniel Gutknecht, 2021. "Horizon confidence sets," Empirical Economics, Springer, vol. 61(2), pages 667-692, August.
- Jianhao Lin & Jiacheng Fan & Yifan Zhang & Liangyuan Chen, 2023. "Real‐time macroeconomic projection using narrative central bank communication," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(2), pages 202-221, March.
- Martin Ellison & Sang Seok Lee & Kevin Hjortshøj O’Rourke, 2020.
"The Ends of 30 Big Depressions,"
Economics Series Working Papers
896, University of Oxford, Department of Economics.
- Kevin Hjortshøj O’Rourke & Sang Seok Lee & Martin Ellison, 2020. "The Ends of 30 Big Depressions," Working Papers 20200035, New York University Abu Dhabi, Department of Social Science, revised May 2020.
- Alkhareif, Ryadh M. & Barnett, William A., 2020.
"Nowcasting Real GDP for Saudi Arabia,"
MPRA Paper
104278, University Library of Munich, Germany.
- Ryadh M. Alkhareif & William A. Barnett, 2020. "Nowcasting Real Gdp For Saudi Arabia," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202018, University of Kansas, Department of Economics, revised Nov 2020.
- Juan Tenorio & Wilder Perez, 2024. "Monthly GDP nowcasting with Machine Learning and Unstructured Data," Papers 2402.04165, arXiv.org.
- Maria Saveria Mavillonio, 2024. "Natural Language Processing Techniques for Long Financial Document," Discussion Papers 2024/317, Dipartimento di Economia e Management (DEM), University of Pisa, Pisa, Italy.
- Zheng, Tingguo & Fan, Xinyue & Jin, Wei & Fang, Kuangnan, 2024. "Words or numbers? Macroeconomic nowcasting with textual and macroeconomic data," International Journal of Forecasting, Elsevier, vol. 40(2), pages 746-761.
- Liyang Tang, 2020. "Application of Nonlinear Autoregressive with Exogenous Input (NARX) neural network in macroeconomic forecasting, national goal setting and global competitiveness assessment," Papers 2005.08735, arXiv.org.
- Alifatussaadah, Ardiana & Primariesty, Anindya Diva & Soleh, Agus Mohamad & Andriansyah, Andriansyah, 2019. "Nowcasting Indonesia's GDP Growth: Are Fiscal Data Useful?," MPRA Paper 105252, University Library of Munich, Germany.
- Alexander James & Yaser S. Abu-Mostafa & Xiao Qiao, 2019. "Nowcasting Recessions using the SVM Machine Learning Algorithm," Papers 1903.03202, arXiv.org, revised Jun 2019.
- Boriss Siliverstovs, 2021. "New York FED Staff Nowcasts and Reality: What Can We Learn about the Future, the Present, and the Past?," Econometrics, MDPI, vol. 9(1), pages 1-25, March.
- Cascaldi-Garcia, Danilo & Ferreira, Thiago R.T. & Giannone, Domenico & Modugno, Michele, 2024.
"Back to the present: Learning about the euro area through a now-casting model,"
International Journal of Forecasting, Elsevier, vol. 40(2), pages 661-686.
- Danilo Cascaldi-Garcia & Thiago Revil T. Ferreira & Domenico Giannone & Michele Modugno, 2021. "Back to the Present: Learning about the Euro Area through a Now-casting Model," International Finance Discussion Papers 1313, Board of Governors of the Federal Reserve System (U.S.).
- Daniel Hopp, 2021. "Economic Nowcasting with Long Short-Term Memory Artificial Neural Networks (LSTM)," Papers 2106.08901, arXiv.org.
- Zhang, Wei & He, Jie & Ge, Chanyuan & Xue, Rui, 2022. "Real-time macroeconomic monitoring using mixed frequency data: Evidence from China," Economic Modelling, Elsevier, vol. 117(C).
- Yose Rizal Damuri & Prabaning Tyas & Haryo Aswicahyono & Lionel Priyadi & Stella Kusumawardhani & Ega Kurnia Yazid, 2021. "Tracking the Ups and Downs in Indonesia’s Economic Activity During COVID-19 Using Mobility Index: Evidence from Provinces in Java and Bali," Working Papers DP-2021-18, Economic Research Institute for ASEAN and East Asia (ERIA).
- Monge, Manuel & Claudio-Quiroga, Gloria & Poza, Carlos, 2024. "Chinese economic behavior in times of covid-19. A new leading economic indicator based on Google trends," International Economics, Elsevier, vol. 177(C).
- Ashton de Silva & Maria Yanotti & Sarah Sinclair & Sveta Angelopoulos, 2023. "Place‐Based Policies and Nowcasting," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 56(3), pages 363-370, September.
- Abdalla, Ahmed M. & Carabias, Jose M. & Patatoukas, Panos N., 2021. "The real-time macro content of corporate financial reports: A dynamic factor model approach," Journal of Monetary Economics, Elsevier, vol. 118(C), pages 260-280.
- Tommaso Proietti & Alessandro Giovannelli, 2021.
"Nowcasting monthly GDP with big data: A model averaging approach,"
Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(2), pages 683-706, April.
- Tommaso Proietti & Alessandro Giovannelli, 2020. "Nowcasting Monthly GDP with Big Data: a Model Averaging Approach," CEIS Research Paper 482, Tor Vergata University, CEIS, revised 12 May 2020.
- George Kapetanios & Fotis Papailias, 2018. "Big Data & Macroeconomic Nowcasting: Methodological Review," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2018-12, Economic Statistics Centre of Excellence (ESCoE).
- Ademmer, Martin & Beckmann, Joscha & Bode, Eckhardt & Boysen-Hogrefe, Jens & Funke, Manuel & Hauber, Philipp & Heidland, Tobias & Hinz, Julian & Jannsen, Nils & Kooths, Stefan & Söder, Mareike & Stame, 2021. "Big Data in der makroökonomischen Analyse," Kieler Beiträge zur Wirtschaftspolitik 32, Kiel Institute for the World Economy (IfW Kiel).
- Richard K. Crump & Stefano Eusepi & Domenico Giannone & Eric Qian & Argia M. Sbordone, 2021. "A Large Bayesian VAR of the United States Economy," Staff Reports 976, Federal Reserve Bank of New York.
- Jiayi Luo & Cindy Long Yu, 2021. "Determining Number of Factors in Dynamic Factor Models Contributing to GDP Nowcasting," Mathematics, MDPI, vol. 9(22), pages 1-23, November.
- Morrissey, Karyn & Spooner, Fiona & Salter, James & Shaddick, Gavin, 2021. "Area level deprivation and monthly COVID-19 cases: The impact of government policy in England," Social Science & Medicine, Elsevier, vol. 289(C).
- Michael Anthonisz, 2023. "Nowcasting Key Australian Macroeconomic Variables," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 56(3), pages 371-380, September.
- repec:spo:wpmain:info:hdl:2441/27od5pb99881folvtfs8s3k16l is not listed on IDEAS
- Antolín-Díaz, Juan & Drechsel, Thomas & Petrella, Ivan, 2024.
"Advances in nowcasting economic activity: The role of heterogeneous dynamics and fat tails,"
Journal of Econometrics, Elsevier, vol. 238(2).
- Antolin-Diaz, Juan & Drechsel, Thomas & Petrella, Ivan, 2023. "Advances in Nowcasting Economic Activity: The Role of Heterogeneous Dynamics and Fat Tails," CEPR Discussion Papers 17800, C.E.P.R. Discussion Papers.
- Maaß, Christina Heike, 2021. "Nowcast als Forecast: Neue Verfahren der BIP-Prognose in Echtzeit," Edition HWWI: Chapters, in: Straubhaar, Thomas (ed.), Neuvermessung der Datenökonomie, volume 6, pages 101-127, Hamburg Institute of International Economics (HWWI).
- Hauber, Philipp, 2022. "Real-time nowcasting with sparse factor models," EconStor Preprints 251551, ZBW - Leibniz Information Centre for Economics.
- Chalmovianský, Jakub & Porqueddu, Mario & Sokol, Andrej, 2020. "Weigh(t)ing the basket: aggregate and component-based inflation forecasts for the euro area," Working Paper Series 2501, European Central Bank.
- Daniel J. Lewis & Karel Mertens & James H. Stock & Mihir Trivedi, 2022.
"Measuring real activity using a weekly economic index,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(4), pages 667-687, June.
- Daniel J. Lewis & Karel Mertens & James H. Stock & Mihir Trivedi, 2020. "Measuring Real Activity Using a Weekly Economic Index," Staff Reports 920, Federal Reserve Bank of New York.
- Daniel J. Lewis & Karel Mertens & James H. Stock, 2020. "Measuring Real Activity Using a Weekly Economic Index," Working Papers 2011, Federal Reserve Bank of Dallas, revised 02 Mar 2021.
- Takashi Nakazawa, 2022. "Constructing GDP Nowcasting Models Using Alternative Data," Bank of Japan Working Paper Series 22-E-9, Bank of Japan.
- Fabrizio Iacone & Luca Rossini & Andrea Viselli, 2024. "Comparing predictive ability in presence of instability over a very short time," Papers 2405.11954, arXiv.org.
- Santos, Anabela M. & Coad, Alex, 2023. "Monitoring and evaluation of transformative innovation policy: Suggestions for Improvement," Socio-Economic Planning Sciences, Elsevier, vol. 90(C).
- Jeffrey C. Chen & Abe Dunn & Kyle Hood & Alexander Driessen & Andrea Batch, 2019. "Off to the Races: A Comparison of Machine Learning and Alternative Data for Predicting Economic Indicators," NBER Chapters, in: Big Data for Twenty-First-Century Economic Statistics, pages 373-402, National Bureau of Economic Research, Inc.
- Samuel N. Cohen & Silvia Lui & Will Malpass & Giulia Mantoan & Lars Nesheim & 'Aureo de Paula & Andrew Reeves & Craig Scott & Emma Small & Lingyi Yang, 2023. "Nowcasting with signature methods," Papers 2305.10256, arXiv.org.
- Jean-Charles Bricongne & Baptiste Meunier & Raquel Caldeira, 2024. "Should Central Banks Care About Text Mining? A Literature Review," Working papers 950, Banque de France.
- repec:hal:spmain:info:hdl:2441/27od5pb99881folvtfs8s3k16l is not listed on IDEAS
- Kohns, David & Bhattacharjee, Arnab, 2023. "Nowcasting growth using Google Trends data: A Bayesian Structural Time Series model," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1384-1412.
- Pérez, Fernando, 2018. "Nowcasting Peruvian GDP using Leading Indicators and Bayesian Variable Selection," Working Papers 2018-010, Banco Central de Reserva del Perú.
- Yan Leng & Nakash Ali Babwany & Alex Pentland, 2021. "Unraveling the association between socioeconomic diversity and consumer price index in a tourism country," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-10, December.
- Hayashi, Fumio & Tachi, Yuta, 2021. "The nowcast revision analysis extended," Economics Letters, Elsevier, vol. 209(C).
- Emilio Blanco & Fiorella Dogliolo & Lorena Garegnani, 2022. "Nowcasting during the Pandemic: Lessons from Argentina," BCRA Working Paper Series 202299, Central Bank of Argentina, Economic Research Department.
- N. V. Suvorov & Yu. V. Beletsky & S. V. Treshchina, 2024. "Tools and Results of the Study of the Relationship between Production Dynamics and the Dynamics of Costs for Technological Innovation in the Russian Economy," Studies on Russian Economic Development, Springer, vol. 35(6), pages 778-787, December.
- Ackermann, Arne & Dickopf, Xaver & Mucha, Tanja, 2021. "Flash und Nowcast: Schnellschätzungen des Bruttoinlandsprodukts in der Corona-Pandemie," WISTA – Wirtschaft und Statistik, Statistisches Bundesamt (Destatis), Wiesbaden, vol. 73(4), pages 17-28.
- Cem Cakmakli & Hamza Demircan, 2020. "Using Survey Information for Improving the Density Nowcasting of US GDP with a Focus on Predictive Performance during Covid-19 Pandemic," Koç University-TUSIAD Economic Research Forum Working Papers 2016, Koc University-TUSIAD Economic Research Forum.
- Bhadury, Soumya & Ghosh, Saurabh & Kumar, Pankaj, 2019. "Nowcasting GDP Growth Using a Coincident Economic Indicator for India," MPRA Paper 96007, University Library of Munich, Germany.
- David Kohns & Arnab Bhattacharjee, 2019. "Interpreting Big Data in the Macro Economy: A Bayesian Mixed Frequency Estimator," CEERP Working Paper Series 010, Centre for Energy Economics Research and Policy, Heriot-Watt University.
- Boriss Siliverstovs, 2021. "Gauging the Effect of Influential Observations on Measures of Relative Forecast Accuracy in a Post-COVID-19 Era: Application to Nowcasting Euro Area GDP Growth," Working Papers 2021/01, Latvijas Banka.
- Esady, Vania, 2022. "Real and nominal effects of monetary shocks under time-varying disagreement," Bank of England working papers 1007, Bank of England.
- Daniel Hopp, 2022. "Performance of long short-term memory artificial neural networks in nowcasting during the COVID-19 crisis," Papers 2203.11872, arXiv.org.