IDEAS home Printed from https://ideas.repec.org/p/nsr/niesrd/565.html
   My bibliography  Save this paper

Nowcasting and Forecasting Average Weekly Earnings in the United Kingdom

Author

Listed:
  • Meg Tulloch

Abstract

The primary objective of this dissertation is to improve the accuracy of the National Institute of Economic and Social Research (NIESR) forecasting model for predicting UK wage growth, as featured in their monthly Wage Tracker. This study investigates the application of several time series methodologies, inclusive of Auto-Regressive Integrated Moving Average (ARIMA), Vector Auto-Regression (VAR), Vector Error Correction Model (VECM), and Dynamic Factor Model (DFM), to enhance forecast precision and reduce uncertainty. By evaluating these models, the research aims to provide a more reliable framework for forecasting wage growth and better inform economic analysis and policy decisions.

Suggested Citation

  • Meg Tulloch, "undated". "Nowcasting and Forecasting Average Weekly Earnings in the United Kingdom," National Institute of Economic and Social Research (NIESR) Discussion Papers 565, National Institute of Economic and Social Research.
  • Handle: RePEc:nsr:niesrd:565
    as

    Download full text from publisher

    File URL: https://niesr.ac.uk/wp-content/uploads/2025/01/DP565-Nowcasting-and-Forecasting-Average-Weekly-Earnings-in-the-United-Kingdom.pdf?ver=JTyNfXaME6p7XOhz4vII
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2008. "Nowcasting: The real-time informational content of macroeconomic data," Journal of Monetary Economics, Elsevier, vol. 55(4), pages 665-676, May.
    2. Barth, James R & Bennett, James T, 1975. "Cost-push versus Demand-pull Inflation: Some Empirical Evidence: Comment," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 7(3), pages 391-397, August.
    3. Holden, Steinar & Wulfsberg, Fredrik, 2009. "How strong is the macroeconomic case for downward real wage rigidity?," Journal of Monetary Economics, Elsevier, vol. 56(4), pages 605-615, May.
    4. Bańbura, Marta & Bobeica, Elena & Martínez Hernández, Catalina, 2023. "What drives core inflation? The role of supply shocks," Working Paper Series 2875, European Central Bank.
    5. Gonzalo Fernández-de-Córdoba & Javier Pérez & José Torres, 2012. "Public and private sector wages interactions in a general equilibrium model," Public Choice, Springer, vol. 150(1), pages 309-326, January.
    6. Olivier Blanchard & Jordi Galí, 2007. "Real Wage Rigidities and the New Keynesian Model," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 35-65, February.
    7. Brandyn Bok & Daniele Caratelli & Domenico Giannone & Argia M. Sbordone & Andrea Tambalotti, 2018. "Macroeconomic Nowcasting and Forecasting with Big Data," Annual Review of Economics, Annual Reviews, vol. 10(1), pages 615-643, August.
    8. repec:ulb:ulbeco:2013/13388 is not listed on IDEAS
    9. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    10. Stockton, David J & Glassman, James E, 1987. "An Evaluation of the Forecast Performance of Alternative Models of Inflation," The Review of Economics and Statistics, MIT Press, vol. 69(1), pages 108-117, February.
    11. Jostein Paulsen, 1984. "Order Determination Of Multivariate Autoregressive Time Series With Unit Roots," Journal of Time Series Analysis, Wiley Blackwell, vol. 5(2), pages 115-127, March.
    12. Ben Bernanke & Olivier J Blanchard, 2023. "What caused the US pandemic-era inflation?," Working Paper Series WP23-4, Peterson Institute for International Economics.
    13. Alexei Onatski, 2010. "Determining the Number of Factors from Empirical Distribution of Eigenvalues," The Review of Economics and Statistics, MIT Press, vol. 92(4), pages 1004-1016, November.
    14. Johansen, Soren, 1991. "Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models," Econometrica, Econometric Society, vol. 59(6), pages 1551-1580, November.
    15. David Reifschneider & David Wilcox, 2022. "The case for a cautiously optimistic outlook for US inflation," Policy Briefs PB22-3, Peterson Institute for International Economics.
    16. Gary R. Albrecht & Kurt V. Krueger, 1992. "The Role of Productivity and Prices in Forecasting Wage Rates," Journal of Forensic Economics, National Association of Forensic Economics, vol. 5(3), pages 187-195, September.
    17. James H. Stock & Mark W. Watson, 2005. "Implications of Dynamic Factor Models for VAR Analysis," NBER Working Papers 11467, National Bureau of Economic Research, Inc.
    18. Robert J. Gordon, 1985. "Understanding Inflation in the 1980s," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 16(1), pages 263-302.
    19. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    20. James H. James & Mark W. Watson, 2005. "Implications of Dynamic Factor Models for VAR Analysis," Working Papers 2005-2, Princeton University. Economics Department..
    21. Robert Shimer, 2005. "The Cyclical Behavior of Equilibrium Unemployment and Vacancies," American Economic Review, American Economic Association, vol. 95(1), pages 25-49, March.
    22. Katie Baker & Martín Almuzara & Hannah O’Keeffe & Argia M. Sbordone, 2023. "Reintroducing the New York Fed Staff Nowcast," Liberty Street Economics 20230908, Federal Reserve Bank of New York.
    23. Granger, C. W. J. & Newbold, P., 1974. "Spurious regressions in econometrics," Journal of Econometrics, Elsevier, vol. 2(2), pages 111-120, July.
    24. Martin DeLuca & Willem Van Zandweghe, 2023. "Postpandemic Nominal Wage Growth: Inflation Pass-Through or Labor Market Imbalance?," Economic Commentary, Federal Reserve Bank of Cleveland, vol. 2023(13), pages 1-6, August.
    25. Thomas J. Sargent & Christopher A. Sims, 1977. "Business cycle modeling without pretending to have too much a priori economic theory," Working Papers 55, Federal Reserve Bank of Minneapolis.
    26. Edmund S. Phelps, 1968. "Money-Wage Dynamics and Labor-Market Equilibrium," Journal of Political Economy, University of Chicago Press, vol. 76(4), pages 678-678.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lukas Berend & Jan Pruser, 2024. "The Transmission of Monetary Policy via Common Cycles in the Euro Area," Papers 2410.05741, arXiv.org, revised Nov 2024.
    2. Cimadomo, Jacopo & Giannone, Domenico & Lenza, Michele & Monti, Francesca & Sokol, Andrej, 2022. "Nowcasting with large Bayesian vector autoregressions," Journal of Econometrics, Elsevier, vol. 231(2), pages 500-519.
    3. Michael Pfarrhofer, 2024. "Forecasts with Bayesian vector autoregressions under real time conditions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(3), pages 771-801, April.
    4. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    5. Bork, Lasse, 2009. "Estimating US Monetary Policy Shocks Using a Factor-Augmented Vector Autoregression: An EM Algorithm Approach," Finance Research Group Working Papers F-2009-03, University of Aarhus, Aarhus School of Business, Department of Business Studies.
    6. Richard K. Crump & Stefano Eusepi & Domenico Giannone & Eric Qian & Argia M. Sbordone, 2021. "A Large Bayesian VAR of the United States Economy," Staff Reports 976, Federal Reserve Bank of New York.
    7. Rangan Gupta & Alain Kabundi & Stephen Miller & Josine Uwilingiye, 2014. "Using large data sets to forecast sectoral employment," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(2), pages 229-264, June.
    8. Pellényi, Gábor, 2012. "A monetáris politika hatása a magyar gazdaságra. Elemzés strukturális, dinamikus faktormodellel [The sectoral effects of monetary policy in Hungary: a structural factor]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(3), pages 263-284.
    9. Matteo Luciani & Lorenzo Ricci, 2014. "Nowcasting Norway," International Journal of Central Banking, International Journal of Central Banking, vol. 10(4), pages 215-248, December.
    10. Jean Boivin & Marc P. Giannoni & Dalibor Stevanović, 2020. "Dynamic Effects of Credit Shocks in a Data-Rich Environment," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 272-284, April.
    11. Andrea Carriero & Francesco Corsello & Massimiliano Marcellino, 2022. "The global component of inflation volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(4), pages 700-721, June.
    12. Brandyn Bok & Daniele Caratelli & Domenico Giannone & Argia M. Sbordone & Andrea Tambalotti, 2018. "Macroeconomic Nowcasting and Forecasting with Big Data," Annual Review of Economics, Annual Reviews, vol. 10(1), pages 615-643, August.
    13. Bańbura, Marta & Giannone, Domenico & Modugno, Michele & Reichlin, Lucrezia, 2013. "Now-Casting and the Real-Time Data Flow," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 195-237, Elsevier.
    14. Matteo Barigozzi & Marco Lippi & Matteo Luciani, 2016. "Non-Stationary Dynamic Factor Models for Large Datasets," Finance and Economics Discussion Series 2016-024, Board of Governors of the Federal Reserve System (U.S.).
    15. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    16. Cascaldi-Garcia, Danilo & Ferreira, Thiago R.T. & Giannone, Domenico & Modugno, Michele, 2024. "Back to the present: Learning about the euro area through a now-casting model," International Journal of Forecasting, Elsevier, vol. 40(2), pages 661-686.
    17. Masud Alam, 2021. "Heterogeneous Responses to the U.S. Narrative Tax Changes: Evidence from the U.S. States," Papers 2107.13678, arXiv.org.
    18. Matteo Barigozzi & Marco Lippi & Matteo Luciani, 2014. "Dynamic Factor Models, Cointegration and Error Correction Mechanisms," Working Papers ECARES ECARES 2014-14, ULB -- Universite Libre de Bruxelles.
    19. Forni, Mario & Gambetti, Luca, 2010. "The dynamic effects of monetary policy: A structural factor model approach," Journal of Monetary Economics, Elsevier, vol. 57(2), pages 203-216, March.
    20. Roberto Casarin & Stefano Grassi & Francesco Ravazzolo & Herman van Dijk, 2022. "A Flexible Predictive Density Combination Model for Large Financial Data Sets in Regular and Crisis Periods," Tinbergen Institute Discussion Papers 22-013/III, Tinbergen Institute.

    More about this item

    Keywords

    Wages; Forecasting; Nowcasting;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nsr:niesrd:565. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Library & Information Manager (email available below). General contact details of provider: https://edirc.repec.org/data/niesruk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.