IDEAS home Printed from https://ideas.repec.org/a/zbw/wistat/237397.html
   My bibliography  Save this article

Flash und Nowcast: Schnellschätzungen des Bruttoinlandsprodukts in der Corona-Pandemie

Author

Listed:
  • Ackermann, Arne
  • Dickopf, Xaver
  • Mucha, Tanja

Abstract

Das Statistische Bundesamt veröffentlicht seit Juli 2020 eine erste Schnellschätzung des Bruttoinlandsprodukts (BIP) bereits 30 Tage nach Quartalsende. Vorausgegangen waren umfangreiche Tests zur Qualitätssicherung. Gleichzeitig wurden ab 2018 im Rahmen einer Machbarkeitsstudie die Möglichkeiten einer weiteren Beschleunigung zu einem BIP-t+10-Nowcast getestet. Dieser Beitrag stellt deren Ergebnisse vor und Revisionsanalysen der Schätzungen des BIP-t+10-Nowcast sowie des BIP-t+30- Flash vor und während der Corona-Pandemie gegenüber. Dabei zeigt sich, dass die BIP-Schnellschätzung nach 30 Tagen, die Expertenschätzungen mit ökonometrischen Verfahren kombiniert, dem rein modellgestützten Ansatz nach 10 Tagen vor allem in Krisenzeiten deutlich überlegen ist.

Suggested Citation

  • Ackermann, Arne & Dickopf, Xaver & Mucha, Tanja, 2021. "Flash und Nowcast: Schnellschätzungen des Bruttoinlandsprodukts in der Corona-Pandemie," WISTA – Wirtschaft und Statistik, Statistisches Bundesamt (Destatis), Wiesbaden, vol. 73(4), pages 17-28.
  • Handle: RePEc:zbw:wistat:237397
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/237397/1/wista-2021-4-017-028.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Brandyn Bok & Daniele Caratelli & Domenico Giannone & Argia M. Sbordone & Andrea Tambalotti, 2018. "Macroeconomic Nowcasting and Forecasting with Big Data," Annual Review of Economics, Annual Reviews, vol. 10(1), pages 615-643, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christian Janz & Peter Kuntze & Tanja Mucha, 2022. "Revisionen in den Volkswirtschaftlichen Gesamtrechnungen in Zeiten von Corona [Revisions in National Accounts in Times of Corona]," Wirtschaftsdienst, Springer;ZBW - Leibniz Information Centre for Economics, vol. 102(11), pages 904-906, November.
    2. Hagenkort-Rieger, Susanne, 2023. "Zukunft gestalten mit amtlicher Statistik – Möglichkeiten aus der Perspektive des Datenproduzenten," WISTA – Wirtschaft und Statistik, Statistisches Bundesamt (Destatis), Wiesbaden, vol. 75(6), pages 42-55.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miranda-Agrippino, Silvia & Ricco, Giovanni, 2018. "Bayesian Vector Autoregressions," The Warwick Economics Research Paper Series (TWERPS) 1159, University of Warwick, Department of Economics.
    2. Richard K. Crump & Stefano Eusepi & Domenico Giannone & Eric Qian & Argia M. Sbordone, 2021. "A Large Bayesian VAR of the United States Economy," Staff Reports 976, Federal Reserve Bank of New York.
    3. Dennis Kant & Andreas Pick & Jasper de Winter, 2022. "Nowcasting GDP using machine learning methods," Working Papers 754, DNB.
    4. James Chapman & Ajit Desai, 2021. "Using Payments Data to Nowcast Macroeconomic Variables During the Onset of COVID-19," Staff Working Papers 21-2, Bank of Canada.
    5. Zhang, Yixiao & Yu, Cindy L. & Li, Haitao, 2022. "Nowcasting GDP Using Dynamic Factor Model with Unknown Number of Factors and Stochastic Volatility: A Bayesian Approach," Econometrics and Statistics, Elsevier, vol. 24(C), pages 75-93.
    6. Monge, Manuel & Claudio-Quiroga, Gloria & Poza, Carlos, 2024. "Chinese economic behavior in times of covid-19. A new leading economic indicator based on Google trends," International Economics, Elsevier, vol. 177(C).
    7. Adams, Patrick A. & Adrian, Tobias & Boyarchenko, Nina & Giannone, Domenico, 2021. "Forecasting macroeconomic risks," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1173-1191.
    8. Joan Paredes & Javier J. Pérez & Gabriel Perez Quiros, 2023. "Fiscal targets. A guide to forecasters?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(4), pages 472-492, June.
    9. Fabrizio Iacone & Luca Rossini & Andrea Viselli, 2024. "Comparing predictive ability in presence of instability over a very short time," Papers 2405.11954, arXiv.org.
    10. Andrei Dubovik & Adam Elbourne & Bram Hendriks & Mark Kattenberg, 2022. "Forecasting World Trade Using Big Data and Machine Learning Techniques," CPB Discussion Paper 441, CPB Netherlands Bureau for Economic Policy Analysis.
    11. Alkhareif, Ryadh M. & Barnett, William A., 2020. "Nowcasting Real GDP for Saudi Arabia," MPRA Paper 104278, University Library of Munich, Germany.
    12. Hauber, Philipp, 2022. "Real-time nowcasting with sparse factor models," EconStor Preprints 251551, ZBW - Leibniz Information Centre for Economics.
    13. Cimadomo, Jacopo & Giannone, Domenico & Lenza, Michele & Monti, Francesca & Sokol, Andrej, 2022. "Nowcasting with large Bayesian vector autoregressions," Journal of Econometrics, Elsevier, vol. 231(2), pages 500-519.
    14. Samuel N. Cohen & Silvia Lui & Will Malpass & Giulia Mantoan & Lars Nesheim & 'Aureo de Paula & Andrew Reeves & Craig Scott & Emma Small & Lingyi Yang, 2023. "Nowcasting with signature methods," Papers 2305.10256, arXiv.org.
    15. Martin Ellison & Sang Seok Lee & Kevin Hjortshøj O'Rourke, 2024. "The Ends of 27 Big Depressions," American Economic Review, American Economic Association, vol. 114(1), pages 134-168, January.
    16. Martin Ellison & Sang Seok Lee & Kevin Hjortshøj O’Rourke, 2020. "The Ends of 30 Big Depressions," Economics Series Working Papers 896, University of Oxford, Department of Economics.
    17. Alifatussaadah, Ardiana & Primariesty, Anindya Diva & Soleh, Agus Mohamad & Andriansyah, Andriansyah, 2019. "Nowcasting Indonesia's GDP Growth: Are Fiscal Data Useful?," MPRA Paper 105252, University Library of Munich, Germany.
    18. Andrii Babii & Eric Ghysels & Jonas Striaukas, 2022. "Machine Learning Time Series Regressions With an Application to Nowcasting," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(3), pages 1094-1106, June.
    19. Abdalla, Ahmed & Carabias, Jose M. & Patatoukas, Panos N., 2021. "The real-time macro content of corporate financial reports: a dynamic factor model approach," LSE Research Online Documents on Economics 108539, London School of Economics and Political Science, LSE Library.
    20. Jinjing Li & Yogi Vidyattama & Hai Anh La & Riyana Miranti & Denisa M Sologon, 2020. "The Impact of COVID-19 and Policy Responses on Australian Income Distribution and Poverty," Papers 2009.04037, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:wistat:237397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/stagvde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.