IDEAS home Printed from https://ideas.repec.org/p/ecb/ecbwps/20212624.html
   My bibliography  Save this paper

Fan charts 2.0: flexible forecast distributions with expert judgement

Author

Listed:
  • Sokol, Andrej

Abstract

I propose a new model, conditional quantile regression (CQR), that generates density forecasts consistent with a specific view of the future evolution of some variables. This addresses a shortcoming of existing quantile regression-based models, for example the at-risk framework popularised by Adrian et al. (2019), when used in settings, such as most forecasting processes within central banks and similar institutions, that require forecasts to be conditional on a set of technical assumptions. Through an application to house price inflation in the euro area, I show that CQR provides a viable alternative to existing approaches to conditional density forecasting, notably Bayesian VARs, with considerable advantages in terms of flexibility and additional insights that do not come at the cost of forecasting performance. JEL Classification: C22, C53, E37, R31

Suggested Citation

  • Sokol, Andrej, 2021. "Fan charts 2.0: flexible forecast distributions with expert judgement," Working Paper Series 2624, European Central Bank.
  • Handle: RePEc:ecb:ecbwps:20212624
    as

    Download full text from publisher

    File URL: https://www.ecb.europa.eu//pub/pdf/scpwps/ecb.wp2624~4e679bae9b.en.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wagner Piazza Gaglianone & Luiz Renato Lima, 2012. "Constructing Density Forecasts from Quantile Regressions," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(8), pages 1589-1607, December.
    2. Ferrara, Laurent & Mogliani, Matteo & Sahuc, Jean-Guillaume, 2022. "High-frequency monitoring of growth at risk," International Journal of Forecasting, Elsevier, vol. 38(2), pages 582-595.
    3. Andersson, Michael K. & Palmqvist, Stefan & Waggoner, Daniel F., 2010. "Density-Conditional Forecasts in Dynamic Multivariate Models," Working Paper Series 247, Sveriges Riksbank (Central Bank of Sweden).
    4. Michael W. McCracken & Joseph T. McGillicuddy, 2019. "An empirical investigation of direct and iterated multistep conditional forecasts," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(2), pages 181-204, March.
    5. Domit, Sílvia & Monti, Francesca & Sokol, Andrej, 2019. "Forecasting the UK economy with a medium-scale Bayesian VAR," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1669-1678.
    6. Gelos, Gaston & Gornicka, Lucyna & Koepke, Robin & Sahay, Ratna & Sgherri, Silvia, 2022. "Capital flows at risk: Taming the ebbs and flows," Journal of International Economics, Elsevier, vol. 134(C).
    7. Adams, Patrick A. & Adrian, Tobias & Boyarchenko, Nina & Giannone, Domenico, 2021. "Forecasting macroeconomic risks," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1173-1191.
    8. Victor Chernozhukov & Iv·n Fern·ndez-Val & Alfred Galichon, 2010. "Quantile and Probability Curves Without Crossing," Econometrica, Econometric Society, vol. 78(3), pages 1093-1125, May.
    9. Khare, Kshitij & Hobert, James P., 2012. "Geometric ergodicity of the Gibbs sampler for Bayesian quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 108-116.
    10. Christopher A. Sims, 1993. "A Nine-Variable Probabilistic Macroeconomic Forecasting Model," NBER Chapters, in: Business Cycles, Indicators, and Forecasting, pages 179-212, National Bureau of Economic Research, Inc.
    11. repec:hal:wpspec:info:hdl:2441/5rkqqmvrn4tl22s9mc4b6ga2g is not listed on IDEAS
    12. Negro, Marco Del & Schorfheide, Frank, 2013. "DSGE Model-Based Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 57-140, Elsevier.
    13. Cimadomo, Jacopo & Giannone, Domenico & Lenza, Michele & Monti, Francesca & Sokol, Andrej, 2022. "Nowcasting with large Bayesian vector autoregressions," Journal of Econometrics, Elsevier, vol. 231(2), pages 500-519.
    14. Battistini, Niccolò & Falagiarda, Matteo & Gareis, Johannes & Hackmann, Angelina & Roma, Moreno, 2021. "The euro area housing market during the COVID-19 pandemic," Economic Bulletin Articles, European Central Bank, vol. 7.
    15. Bańbura, Marta & Giannone, Domenico & Lenza, Michele, 2015. "Conditional forecasts and scenario analysis with vector autoregressions for large cross-sections," International Journal of Forecasting, Elsevier, vol. 31(3), pages 739-756.
    16. Fitzenberger, Bernd, 1998. "The moving blocks bootstrap and robust inference for linear least squares and quantile regressions," Journal of Econometrics, Elsevier, vol. 82(2), pages 235-287, February.
    17. Brandyn Bok & Daniele Caratelli & Domenico Giannone & Argia M. Sbordone & Andrea Tambalotti, 2018. "Macroeconomic Nowcasting and Forecasting with Big Data," Annual Review of Economics, Annual Reviews, vol. 10(1), pages 615-643, August.
    18. Dieter Gerdesmeier & Andreja Lenarčič & Barbara Roffia, 2015. "An alternative method for identifying booms and busts in the Euro area housing market," Applied Economics, Taylor & Francis Journals, vol. 47(5), pages 499-518, January.
    19. Wagner Piazza Gaglianone & Luiz Renato Lima, 2014. "Constructing Optimal Density Forecasts From Point Forecast Combinations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(5), pages 736-757, August.
    20. Mr. Tobias Adrian & Andrea Deghi & Mitsuru Katagiri & Mr. Sohaib Shahid & Nico Valckx, 2020. "Predicting Downside Risks to House Prices and Macro-Financial Stability," IMF Working Papers 2020/011, International Monetary Fund.
    21. Tobias Adrian & Nina Boyarchenko & Domenico Giannone, 2019. "Vulnerable Growth," American Economic Review, American Economic Association, vol. 109(4), pages 1263-1289, April.
    22. Figueres, Juan Manuel & Jarociński, Marek, 2020. "Vulnerable growth in the euro area: Measuring the financial conditions," Economics Letters, Elsevier, vol. 191(C).
    23. Eguren-Martin, Fernando & O'Neill, Cian & Sokol, Andrej & von dem Berge, Lukas, 2024. "Capital flows-at-risk: Push, pull and the role of policy," Journal of International Money and Finance, Elsevier, vol. 147(C).
    24. Robert B. Litterman, 1979. "Techniques of forecasting using vector autoregressions," Working Papers 115, Federal Reserve Bank of Minneapolis.
    25. Manzan, Sebastiano & Zerom, Dawit, 2013. "Are macroeconomic variables useful for forecasting the distribution of U.S. inflation?," International Journal of Forecasting, Elsevier, vol. 29(3), pages 469-478.
    26. Faust, Jon & Wright, Jonathan H., 2008. "Efficient forecast tests for conditional policy forecasts," Journal of Econometrics, Elsevier, vol. 146(2), pages 293-303, October.
    27. Todd E. Clark & Michael W. McCracken, 2014. "Evaluating Conditional Forecasts from Vector Autoregressions," Working Papers 2014-25, Federal Reserve Bank of St. Louis.
    28. Coenen, Günter & Karadi, Peter & Schmidt, Sebastian & Warne, Anders, 2018. "The New Area-Wide Model II: an extended version of the ECB’s micro-founded model for forecasting and policy analysis with a financial sector," Working Paper Series 2200, European Central Bank.
    29. Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2015. "Prior Selection for Vector Autoregressions," The Review of Economics and Statistics, MIT Press, vol. 97(2), pages 436-451, May.
    30. Chalmovianský, Jakub & Porqueddu, Mario & Sokol, Andrej, 2020. "Weigh(t)ing the basket: aggregate and component-based inflation forecasts for the euro area," Working Paper Series 2501, European Central Bank.
    31. repec:hal:spmain:info:hdl:2441/5rkqqmvrn4tl22s9mc4b6ga2g is not listed on IDEAS
    32. Antolín-Díaz, Juan & Petrella, Ivan & Rubio-Ramírez, Juan F., 2021. "Structural scenario analysis with SVARs," Journal of Monetary Economics, Elsevier, vol. 117(C), pages 798-815.
    33. G. Elliott & C. Granger & A. Timmermann (ed.), 2013. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 2, number 2.
    34. Sulkhan Chavleishvili & Simone Manganelli, 2024. "Forecasting and stress testing with quantile vector autoregression," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(1), pages 66-85, January.
    35. Alex Tagliabracci, 2020. "Asymmetry in the conditional distribution of euro-area inflation," Temi di discussione (Economic working papers) 1270, Bank of Italy, Economic Research and International Relations Area.
    36. Boneva, Lena & Fawcett, Nicholas & Masolo, Riccardo M. & Waldron, Matt, 2019. "Forecasting the UK economy: Alternative forecasting methodologies and the role of off-model information," International Journal of Forecasting, Elsevier, vol. 35(1), pages 100-120.
    37. Korobilis, Dimitris, 2017. "Quantile regression forecasts of inflation under model uncertainty," International Journal of Forecasting, Elsevier, vol. 33(1), pages 11-20.
    38. Yu, Keming & Moyeed, Rana A., 2001. "Bayesian quantile regression," Statistics & Probability Letters, Elsevier, vol. 54(4), pages 437-447, October.
    39. Burgess, Stephen & Fernandez-Corugedo, Emilio & Groth, Charlotta & Harrison, Richard & Monti, Francesca & Theodoridis, Konstantinos & Waldron, Matt, 2013. "The Bank of England's forecasting platform: COMPASS, MAPS, EASE and the suite of models," Bank of England working papers 471, Bank of England.
    40. Carriero, Andrea & Clark, Todd E. & Marcellino, Massimiliano, 2019. "Large Bayesian vector autoregressions with stochastic volatility and non-conjugate priors," Journal of Econometrics, Elsevier, vol. 212(1), pages 137-154.
    41. Adelchi Azzalini & Antonella Capitanio, 2003. "Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 367-389, May.
    42. Angelini, Elena & Lalik, Magdalena & Lenza, Michele & Paredes, Joan, 2019. "Mind the gap: A multi-country BVAR benchmark for the Eurosystem projections," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1658-1668.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James Mitchell & Aubrey Poon & Dan Zhu, 2024. "Constructing density forecasts from quantile regressions: Multimodality in macrofinancial dynamics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 790-812, August.
    2. Pfarrhofer, Michael, 2022. "Modeling tail risks of inflation using unobserved component quantile regressions," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
    3. David Kohns & Tibor Szendrei, 2021. "Decoupling Shrinkage and Selection for the Bayesian Quantile Regression," Papers 2107.08498, arXiv.org.
    4. Ganics, Gergely & Odendahl, Florens, 2021. "Bayesian VAR forecasts, survey information, and structural change in the euro area," International Journal of Forecasting, Elsevier, vol. 37(2), pages 971-999.
    5. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2024. "Capturing Macro‐Economic Tail Risks with Bayesian Vector Autoregressions," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 56(5), pages 1099-1127, August.
    6. Cimadomo, Jacopo & Giannone, Domenico & Lenza, Michele & Monti, Francesca & Sokol, Andrej, 2022. "Nowcasting with large Bayesian vector autoregressions," Journal of Econometrics, Elsevier, vol. 231(2), pages 500-519.
    7. Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino & Michael Pfarrhofer, 2023. "Tail Forecasting With Multivariate Bayesian Additive Regression Trees," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 979-1022, August.
    8. Angelini, Elena & Lalik, Magdalena & Lenza, Michele & Paredes, Joan, 2019. "Mind the gap: A multi-country BVAR benchmark for the Eurosystem projections," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1658-1668.
    9. Miranda-Agrippino, Silvia & Ricco, Giovanni, 2018. "Bayesian Vector Autoregressions," The Warwick Economics Research Paper Series (TWERPS) 1159, University of Warwick, Department of Economics.
    10. Andrea Carriero & Todd E. Clark & Marcellino Massimiliano, 2020. "Nowcasting Tail Risks to Economic Activity with Many Indicators," Working Papers 20-13R2, Federal Reserve Bank of Cleveland, revised 22 Sep 2020.
    11. Peter McAdam & Anders Warne, 2024. "Density forecast combinations: The real‐time dimension," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1153-1172, August.
    12. Tallman, Ellis W. & Zaman, Saeed, 2020. "Combining survey long-run forecasts and nowcasts with BVAR forecasts using relative entropy," International Journal of Forecasting, Elsevier, vol. 36(2), pages 373-398.
    13. Marian Vavra, 2023. "Bias-Correction in Time Series Quantile Regression Models," Working and Discussion Papers WP 3/2023, Research Department, National Bank of Slovakia.
    14. Richard K. Crump & Stefano Eusepi & Domenico Giannone & Eric Qian & Argia M. Sbordone, 2021. "A Large Bayesian VAR of the United States Economy," Staff Reports 976, Federal Reserve Bank of New York.
    15. Ferrara, Laurent & Mogliani, Matteo & Sahuc, Jean-Guillaume, 2022. "High-frequency monitoring of growth at risk," International Journal of Forecasting, Elsevier, vol. 38(2), pages 582-595.
    16. repec:hal:spmain:info:hdl:2441/27od5pb99881folvtfs8s3k16l is not listed on IDEAS
    17. repec:spo:wpmain:info:hdl:2441/27od5pb99881folvtfs8s3k16l is not listed on IDEAS
    18. Chalmovianský, Jakub & Porqueddu, Mario & Sokol, Andrej, 2020. "Weigh(t)ing the basket: aggregate and component-based inflation forecasts for the euro area," Working Paper Series 2501, European Central Bank.
    19. Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino & Michael Pfarrhofer, 2024. "Investigating Growth-at-Risk Using a Multicountry Nonparametric Quantile Factor Model," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(4), pages 1302-1317, October.
    20. Busetti, Fabio & Caivano, Michele & Delle Monache, Davide & Pacella, Claudia, 2021. "The time-varying risk of Italian GDP," Economic Modelling, Elsevier, vol. 101(C).
    21. Fernando Eguren-Martin & Andrej Sokol, 2022. "Attention to the Tail(s): Global Financial Conditions and Exchange Rate Risks," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 70(3), pages 487-519, September.
    22. Knut Are Aastveit & Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2017. "Have Standard VARS Remained Stable Since the Crisis?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(5), pages 931-951, August.

    More about this item

    Keywords

    at-risk; conditional forecasting; density forecast evaluation; house prices; quantile regression;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • R31 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Real Estate Markets, Spatial Production Analysis, and Firm Location - - - Housing Supply and Markets

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecb:ecbwps:20212624. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Official Publications (email available below). General contact details of provider: https://edirc.repec.org/data/emieude.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.