IDEAS home Printed from https://ideas.repec.org/h/zbw/hwwich/281011.html
   My bibliography  Save this book chapter

Nowcast als Forecast: Neue Verfahren der BIP-Prognose in Echtzeit

In: Neuvermessung der Datenökonomie

Author

Listed:
  • Maaß, Christina Heike

Abstract

(Finanz-)politische Entscheidungen werden meist nach Bewertung aktueller und zukünftig erwarteter ökonomischer Entwicklungen getroffen. Dafür benötigen Entscheidungsträger:innen aus der (Wirtschafts-) Politik beziehungsweise aus den Zentralbanken möglichst aktuelle Konjunkturdaten, um bestmöglich Einfluss auf die gegenwärtige Wirtschaftslage ausüben zu können. Da wichtige volkswirtschaftliche Kennzahlen wie das Bruttoinlandsprodukt (BIP) zumeist nur in mehrmonatigen Intervallen und mit Verzögerung veröffentlicht werden, ist der Großteil der etablierten Indikatoren in Zeiten beschleunigter wirtschaftlicher Veränderungen nicht mehr agil genug. Deswegen befassen sich Ökonom: innen tiefgehend mit der Verbesserung des makroökonomischen Monitorings in Echtzeit, um ein Verfahren zu entwickeln, mit dem die Gegenwart und die nahe Vergangenheit prognostiziert werden können. Eine Prognose des gegenwärtigen Zustands beziehungsweise der nahen Zukunft oder Vergangenheit, am Rande der verfügbaren Daten, wird als "Nowcast" bezeichnet. Dieser Begriff setzt sich aus den englischen Wörtern now (jetzt) und forecast (Prognose) zusammen. Er bedeutet das Beobachten der aktuellen Wirtschaftslage in Echtzeit durch Prognose der Gegenwart, wobei die gegenwärtige Prognose immer wieder aktualisiert wird. (...)

Suggested Citation

  • Maaß, Christina Heike, 2021. "Nowcast als Forecast: Neue Verfahren der BIP-Prognose in Echtzeit," Edition HWWI: Chapters, in: Straubhaar, Thomas (ed.), Neuvermessung der Datenökonomie, volume 6, pages 101-127, Hamburg Institute of International Economics (HWWI).
  • Handle: RePEc:zbw:hwwich:281011
    DOI: 10.15460/hup.254.1926
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/281011/1/1876299002.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.15460/hup.254.1926?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bańbura, Marta & Giannone, Domenico & Modugno, Michele & Reichlin, Lucrezia, 2013. "Now-Casting and the Real-Time Data Flow," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 195-237, Elsevier.
    2. Jennifer L. Castle & Nicholas W.P. Fawcett & David F. Hendry, 2009. "Nowcasting Is Not Just Contemporaneous Forecasting," National Institute Economic Review, National Institute of Economic and Social Research, vol. 210(1), pages 71-89, October.
    3. Brandyn Bok & Daniele Caratelli & Domenico Giannone & Argia M. Sbordone & Andrea Tambalotti, 2018. "Macroeconomic Nowcasting and Forecasting with Big Data," Annual Review of Economics, Annual Reviews, vol. 10(1), pages 615-643, August.
    4. Bureau of Economic Analysis, 2020. "The 2020 Annual Update of the National Income and Product Accounts," Survey of Current Business, Bureau of Economic Analysis, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alkhareif, Ryadh M. & Barnett, William A., 2020. "Nowcasting Real GDP for Saudi Arabia," MPRA Paper 104278, University Library of Munich, Germany.
    2. Cimadomo, Jacopo & Giannone, Domenico & Lenza, Michele & Monti, Francesca & Sokol, Andrej, 2022. "Nowcasting with large Bayesian vector autoregressions," Journal of Econometrics, Elsevier, vol. 231(2), pages 500-519.
    3. Andrii Babii & Eric Ghysels & Jonas Striaukas, 2022. "Machine Learning Time Series Regressions With an Application to Nowcasting," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(3), pages 1094-1106, June.
    4. Jinjing Li & Yogi Vidyattama & Hai Anh La & Riyana Miranti & Denisa M Sologon, 2020. "The Impact of COVID-19 and Policy Responses on Australian Income Distribution and Poverty," Papers 2009.04037, arXiv.org.
    5. David Kohns & Arnab Bhattacharjee, 2020. "Nowcasting Growth using Google Trends Data: A Bayesian Structural Time Series Model," Papers 2011.00938, arXiv.org, revised May 2022.
    6. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    7. Cascaldi-Garcia, Danilo & Ferreira, Thiago R.T. & Giannone, Domenico & Modugno, Michele, 2024. "Back to the present: Learning about the euro area through a now-casting model," International Journal of Forecasting, Elsevier, vol. 40(2), pages 661-686.
    8. Philip ME Garboden, 2019. "Sources and Types of Big Data for Macroeconomic Forecasting," Working Papers 2019-3, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    9. Antolín-Díaz, Juan & Drechsel, Thomas & Petrella, Ivan, 2024. "Advances in nowcasting economic activity: The role of heterogeneous dynamics and fat tails," Journal of Econometrics, Elsevier, vol. 238(2).
    10. Bańbura, Marta & Belousova, Irina & Bodnár, Katalin & Tóth, Máté Barnabás, 2023. "Nowcasting employment in the euro area," Working Paper Series 2815, European Central Bank.
    11. George Kapetanios & Fotis Papailias, 2018. "Big Data & Macroeconomic Nowcasting: Methodological Review," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2018-12, Economic Statistics Centre of Excellence (ESCoE).
    12. Pérez, Fernando, 2018. "Nowcasting Peruvian GDP using Leading Indicators and Bayesian Variable Selection," Working Papers 2018-010, Banco Central de Reserva del Perú.
    13. Jack Fosten & Daniel Gutknecht, 2021. "Horizon confidence sets," Empirical Economics, Springer, vol. 61(2), pages 667-692, August.
    14. David Kohns & Arnab Bhattacharjee, 2019. "Interpreting Big Data in the Macro Economy: A Bayesian Mixed Frequency Estimator," CEERP Working Paper Series 010, Centre for Energy Economics Research and Policy, Heriot-Watt University.
    15. Lyu, Yifei & Nie, Jun & Yang, Shu-Kuei X., 2021. "Forecasting US economic growth in downturns using cross-country data," Economics Letters, Elsevier, vol. 198(C).
    16. Emilio Blanco & Fiorella Dogliolo & Lorena Garegnani, 2022. "Nowcasting during the Pandemic: Lessons from Argentina," BCRA Working Paper Series 202299, Central Bank of Argentina, Economic Research Department.
    17. Jonas E. Arias & Minchul Shin, 2020. "Tracking U.S. Real GDP Growth During the Pandemic," Economic Insights, Federal Reserve Bank of Philadelphia, vol. 5(3), pages 9-14, September.
    18. Barış Soybilgen & Ege Yazgan, 2021. "Nowcasting US GDP Using Tree-Based Ensemble Models and Dynamic Factors," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 387-417, January.
    19. Zhang, Qin & Ni, He & Xu, Hao, 2023. "Nowcasting Chinese GDP in a data-rich environment: Lessons from machine learning algorithms," Economic Modelling, Elsevier, vol. 122(C).
    20. Zheng, Tingguo & Fan, Xinyue & Jin, Wei & Fang, Kuangnan, 2024. "Words or numbers? Macroeconomic nowcasting with textual and macroeconomic data," International Journal of Forecasting, Elsevier, vol. 40(2), pages 746-761.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:hwwich:281011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/hwwiide.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.