IDEAS home Printed from https://ideas.repec.org/f/c/pmo742.html
   My authors  Follow this author

Juan B. Moreno-Cruz

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. Juan Moreno-Cruz & Anthony Harding, 2022. "A Unifying Theory of Foreign Intervention in Domestic Climate Policy," CESifo Working Paper Series 10172, CESifo.

    Cited by:

    1. Toke S Aidt & Facundo Albornoz & Esther Hauk, 2024. "To cut or not to cut: Deforestation policy under the shadow of foreign influence," Discussion Papers 2024-03, University of Nottingham, GEP.

  2. Christopher Blackburn & Juan Moreno-Cruz, 2020. "Energy Efficiency in General Equilibrium with Input-Output Linkages," BEA Working Papers 0172, Bureau of Economic Analysis.

    Cited by:

    1. Böhringer, Christoph & Rivers, Nicholas, 2021. "The energy efficiency rebound effect in general equilibrium," Journal of Environmental Economics and Management, Elsevier, vol. 109(C).
    2. Zhang, Hui & Zhou, Peng & Sun, Xiumei & Ni, Guanqun, 2024. "Disparities in energy efficiency and its determinants in Chinese cities: From the perspective of heterogeneity," Energy, Elsevier, vol. 289(C).
    3. He, Weimin & Wang, Bin, 2024. "Environmental jurisdiction and energy efficiency: Evidence from China's establishment of environmental courts," Energy Economics, Elsevier, vol. 131(C).
    4. Matsumura, Kohei & Naka, Tomomi & Sudo, Nao, 2024. "Analysis of the transmission of carbon taxes using a multi-sector DSGE," Energy Economics, Elsevier, vol. 136(C).

  3. Rickels, Wilfried & Quaas, Martin F. & Ricke, Katharine & Quaas, Johannes & Moreno-Cruz, Juan & Smulders, Sjak, 2020. "Who turns the global thermostat and by how much?," Open Access Publications from Kiel Institute for the World Economy 228647, Kiel Institute for the World Economy (IfW Kiel).

    Cited by:

    1. Riccardo Ghidoni & Anna Lou Abatayo & Valentina Bosetti & Marco Casari & Massimo Tavoni, 2023. "Governing Climate Geoengineering: Side Payments Are Not Enough," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 10(5), pages 1149-1177.
    2. Michael Finus & Francesco Furini, 2022. "Global Climate Governance in the Light of Geoengineering: A Shot in the Dark?," Graz Economics Papers 2022-02, University of Graz, Department of Economics.
    3. Finus, Michael & Furini, Francesco, 2023. "Global climate governance in the light of geoengineering: A shot in the dark?," Journal of Environmental Economics and Management, Elsevier, vol. 122(C).
    4. Piergiuseppe Pezzoli & Johannes Emmerling & Massimo Tavoni, 2023. "SRM on the table: the role of geoengineering for the stability and effectiveness of climate coalitions," Climatic Change, Springer, vol. 176(10), pages 1-21, October.
    5. Juan Moreno-Cruz & Anthony Harding, 2022. "A Unifying Theory of Foreign Intervention in Domestic Climate Policy," CESifo Working Paper Series 10172, CESifo.
    6. Irina Bakalova & Mariia Belaia, 2023. "Stability of Efficient International Agreements on Solar Geoengineering," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 86(3), pages 673-712, November.

  4. Gregory Casey & Soheil Shayegh & Juan Moreno-Cruz & Martin Bunzl & Oded Galor & Ken Caldeira, 2019. "The Impact of Climate Change on Fertility," Working Papers 2019-2, Brown University, Department of Economics.

    Cited by:

    1. Gregory Casey & Stephie Fried & Matthew Gibson, 2022. "Understanding Climate Damages: Consumption versus Investment," Working Paper Series 2022-21, Federal Reserve Bank of San Francisco.
    2. Bretschger, Lucas & Pittel, Karen, 2020. "Twenty Key Challenges in Environmental and Resource Economics," Munich Reprints in Economics 84717, University of Munich, Department of Economics.
    3. Lucas Bretschger, 2019. "Malthus in the Light of Climate Change," CER-ETH Economics working paper series 19/320, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    4. Reyer Gerlagh & Veronica Lupi & Marzio Galeotti, 2023. "Fertility and climate change," Scandinavian Journal of Economics, Wiley Blackwell, vol. 125(1), pages 208-252, January.
    5. Gilli, Martino & Calcaterra, Matteo & Emmerling, Johannes & Granella, Francesco, 2024. "Climate change impacts on the within-country income distributions," Journal of Environmental Economics and Management, Elsevier, vol. 127(C).
    6. Soheil Shayegh & Johannes Emmerling & Massimo Tavoni, 2022. "International Migration Projections across Skill Levels in the Shared Socioeconomic Pathways," Sustainability, MDPI, vol. 14(8), pages 1-33, April.
    7. Lucas Bretschger & Karen Pittel, 2019. "Twenty Key Questions in Environmental and Resource Economics," CER-ETH Economics working paper series 19/328, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    8. Anna Ngweye Owunebe & Professor Peter Terfa Ortese & Dr Joseph Audu Obida, 2024. "Percieved Impact of Covid-19 Pandemic on Social Competence and Depression among Tertiary Institution Students in Benue and Nasaraws States, Nigeria," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 8(3), pages 2742-2750, March.
    9. Sáenz Pinzón, María Camila, 2024. "Instrumentos financieros y bienestar de los hogares rurales colombianos ante choques climáticos," Documentos CEDE 21191, Universidad de los Andes, Facultad de Economía, CEDE.

  5. Matthew E. Oliver & Juan Moreno-Cruz & Ross C. Beppler, 2019. "Microeconomics of the rebound effect for residential solar photovoltaic systems," CESifo Working Paper Series 7635, CESifo.

    Cited by:

    1. Frondel, Manuel & Kaestner, Kathrin & Sommer, Stephan & Vance, Colin, 2021. "Photovoltaics and the Solar Rebound: Evidence for Germany," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242356, Verein für Socialpolitik / German Economic Association.
    2. Ross C. Beppler & Daniel C. Matisoff & Matthew E. Oliver, 2023. "Electricity consumption changes following solar adoption: Testing for a solar rebound," Economic Inquiry, Western Economic Association International, vol. 61(1), pages 58-81, January.
    3. Atasoy, Ayse Tugba & Schmitz, Hendrik & Madlener, Reinhard, 2021. "Mechanisms for Rebound Effects of Solar Electricity Prosuming in Germany," FCN Working Papers 10/2021, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN), revised 01 Jun 2023.
    4. Peter M. Schwarz, Nathan Duma, and Ercument Camadan, 2023. "Compensating Solar Prosumers Using Buy-All, Sell-All as an Alternative to Net Metering and Net Purchasing: Total Use, Rebound, and Cross Subsidization," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    5. Frondel, Manuel & Kaestner, Kathrin & Sommer, Stephan & Vance, Colin, 2022. "Photovoltaics and the solar rebound: Evidence for Germany," Ruhr Economic Papers 954, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.

  6. Juan Moreno-Cruz & Gernot Wagner & David W. Keith, 2018. "An Economic Anatomy of Optimal Climate Policy," CESifo Working Paper Series 7059, CESifo.

    Cited by:

    1. Adrien Fabre & Gernot Wagner, 2020. "Availability of risky geoengineering can make an ambitious climate mitigation agreement more likely," PSE-Ecole d'économie de Paris (Postprint) halshs-04363061, HAL.
    2. Jin, Wei & Zhang, ZhongXiang, 2019. "Capital Accumulation, GreeParadox, and Stranded Assets: An Endogenous Growth Perspective," ETA: Economic Theory and Applications 281286, Fondazione Eni Enrico Mattei (FEEM).
    3. Juan Moreno-Cruz & Anthony Harding, 2022. "A Unifying Theory of Foreign Intervention in Domestic Climate Policy," CESifo Working Paper Series 10172, CESifo.
    4. Tsigaris, Panagiotis & Wood, Joel, 2019. "The potential impacts of climate change on capital in the 21st century," Ecological Economics, Elsevier, vol. 162(C), pages 74-86.
    5. Jin, Wei & Shi, Xunpeng & Zhang, Lin, 2021. "Energy transition without dirty capital stranding," Energy Economics, Elsevier, vol. 102(C).

  7. Rickels, Wilfried & Quaas, Martin F. & Ricke, Kate & Quaas, Johannes & Moreno Cruz, Juan & Smulders, Sjak, 2018. "Turning the global thermostat - who, when, and how much?," Kiel Working Papers 2110, Kiel Institute for the World Economy (IfW Kiel).

    Cited by:

    1. Niklas V. Lehmann, 2022. "Exploring the stability of solar geoengineering agreements," Papers 2210.09145, arXiv.org, revised May 2023.
    2. Axel Michaelowa, 2021. "Solar Radiation Modification ‐ A “Silver Bullet” Climate Policy for Populist and Authoritarian Regimes?," Global Policy, London School of Economics and Political Science, vol. 12(S1), pages 119-128, April.

  8. Jevan Cherniwchan & Juan Moreno-Cruz, 2018. "Maize and Precolonial Africa," CESifo Working Paper Series 7018, CESifo.

    Cited by:

    1. Graziella Bertocchi & Angelo Dimico & Gian Luca Tedeschi, 2022. "Strangers and Foreigners: Trust and Attitudes toward Citizenship," Center for Economic Research (RECent) 152, University of Modena and Reggio E., Dept. of Economics "Marco Biagi".
    2. Dincecco, Mark & Fenske, James & Menon, Anil, 2020. "The Columbian Exchange and conflict in Asia," CAGE Online Working Paper Series 527, Competitive Advantage in the Global Economy (CAGE).
    3. Juan Moreno-Cruz & M. Scott Taylor, 2020. "Food, Fuel and the Domesday Economy," NBER Working Papers 27414, National Bureau of Economic Research, Inc.
    4. Andrew Dickens, 2022. "Understanding Ethnolinguistic Differences: The Roles of Geography and Trade," The Economic Journal, Royal Economic Society, vol. 132(643), pages 953-980.
    5. Boxell, Levi, 2016. "A Drought-Induced African Slave Trade?," MPRA Paper 69853, University Library of Munich, Germany.
    6. Graziella Bertocchi & Angelo Dimico & Gian Luca Tedeschi, 2022. "Strangers and Foreigners: Trust and Attitudes toward Citizenship," Department of Economics 0200, University of Modena and Reggio E., Faculty of Economics "Marco Biagi".
    7. Boxell, Levi & Dalton, John T. & Leung, Tin Cheuk, 2019. "The Slave Trade and Conflict in Africa, 1400-2000," MPRA Paper 94468, University Library of Munich, Germany.

  9. Daniel Heyen & Joshua Horton & Juan Moreno-Cruz, 2018. "Strategic Implications of Counter-Geoengineering: Clash or Cooperation?," CESifo Working Paper Series 7180, CESifo.

    Cited by:

    1. Riccardo Ghidoni & Anna Lou Abatayo & Valentina Bosetti & Marco Casari & Massimo Tavoni, 2023. "Governing Climate Geoengineering: Side Payments Are Not Enough," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 10(5), pages 1149-1177.
    2. Felipe de Bolle & Egemen Kolemen, 2024. "Counter-Geoengineering: Feasibility and Policy Implications for a Geoengineered World," Papers 2412.03598, arXiv.org.
    3. Michael Finus & Francesco Furini, 2022. "Global Climate Governance in the Light of Geoengineering: A Shot in the Dark?," Graz Economics Papers 2022-02, University of Graz, Department of Economics.
    4. Finus, Michael & Furini, Francesco, 2023. "Global climate governance in the light of geoengineering: A shot in the dark?," Journal of Environmental Economics and Management, Elsevier, vol. 122(C).
    5. Adrien Fabre & Gernot Wagner, 2020. "Availability of risky geoengineering can make an ambitious climate mitigation agreement more likely," PSE-Ecole d'économie de Paris (Postprint) halshs-04363061, HAL.
    6. Duncan McLaren & Olaf Corry, 2021. "Clash of Geofutures and the Remaking of Planetary Order: Faultlines underlying Conflicts over Geoengineering Governance," Global Policy, London School of Economics and Political Science, vol. 12(S1), pages 20-33, April.
    7. Piergiuseppe Pezzoli & Johannes Emmerling & Massimo Tavoni, 2023. "SRM on the table: the role of geoengineering for the stability and effectiveness of climate coalitions," Climatic Change, Springer, vol. 176(10), pages 1-21, October.
    8. Axel Michaelowa, 2021. "Solar Radiation Modification ‐ A “Silver Bullet” Climate Policy for Populist and Authoritarian Regimes?," Global Policy, London School of Economics and Political Science, vol. 12(S1), pages 119-128, April.
    9. Rickels, Wilfried & Quaas, Martin F. & Ricke, Katharine & Quaas, Johannes & Moreno-Cruz, Juan & Smulders, Sjak, 2020. "Who turns the global thermostat and by how much?," Energy Economics, Elsevier, vol. 91(C).
    10. Juan Moreno-Cruz & Anthony Harding, 2022. "A Unifying Theory of Foreign Intervention in Domestic Climate Policy," CESifo Working Paper Series 10172, CESifo.
    11. Heyen, Daniel & Tavoni, Alessandro, 2024. "Strategic dimensions of solar geoengineering: economic theory and experiments," LSE Research Online Documents on Economics 124448, London School of Economics and Political Science, LSE Library.
    12. Elkhan Richard Sadik-Zada & Andrea Gatto & Luigi Aldieri & Giovanna Bimonte & Luigi Senatore & Concetto Paolo Vinci, 2024. "Game Theory Applications to Socio-Environmental Studies, Development Economics, and Sustainability Research," Games, MDPI, vol. 15(1), pages 1-4, January.
    13. Irina Bakalova & Mariia Belaia, 2023. "Stability of Efficient International Agreements on Solar Geoengineering," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 86(3), pages 673-712, November.
    14. Muhammet A. Bas & Aseem Mahajan, 2020. "Contesting the climate," Climatic Change, Springer, vol. 162(4), pages 1985-2002, October.

  10. Moreno-Cruz, Juan & Taylor, M. Scott, 2017. "An Energy-centric Theory of Agglomeration," Working papers 2017/01, Faculty of Business and Economics - University of Basel.

    Cited by:

    1. Juan Moreno-Cruz & M. Scott Taylor, 2020. "Food, Fuel and the Domesday Economy," NBER Working Papers 27414, National Bureau of Economic Research, Inc.

  11. Tavoni, Massimo & Bosetti, Valentina & Shayegh, Soheil & Drouet, Laurent & Emmerling, Johannes & Fuss, Sabine & Goeschl, Timo & Guivarch, Celine & Lontzek, Thomas S. & Manoussi, Vassiliki & Moreno-Cru, 2017. "Challenges and Opportunities for Integrated Modeling of Climate Engineering," MITP: Mitigation, Innovation and Transformation Pathways 263160, Fondazione Eni Enrico Mattei (FEEM).

    Cited by:

    1. Merk, Christine & Liebe, Ulf & Meyerhoff, Jürgen & Rehdanz, Katrin, 2023. "German citizens’ preference for domestic carbon dioxide removal by afforestation is incompatible with national removal potential," Open Access Publications from Kiel Institute for the World Economy 270884, Kiel Institute for the World Economy (IfW Kiel).
    2. Jérôme Hilaire & Jan C. Minx & Max W. Callaghan & Jae Edmonds & Gunnar Luderer & Gregory F. Nemet & Joeri Rogelj & Maria Mar Zamora, 2019. "Negative emissions and international climate goals—learning from and about mitigation scenarios," Climatic Change, Springer, vol. 157(2), pages 189-219, November.

  12. Rong Wang & Juan Moreno-Cruz & Ken Caldeira, 2017. "Will the use of a carbon tax for revenue generation produce an incentive to continue carbon emissions?," Post-Print hal-03226925, HAL.

    Cited by:

    1. Xin-gang, Zhao & Ling, Wu & Ying, Zhou, 2020. "How to achieve incentive regulation under renewable portfolio standards and carbon tax policy? A China's power market perspective," Energy Policy, Elsevier, vol. 143(C).

  13. Garth Heutel & Juan Moreno Cruz & Soheil Shayegh, 2015. "Solar Geoengineering, Uncertainty, and the Price of Carbon," NBER Working Papers 21355, National Bureau of Economic Research, Inc.

    Cited by:

    1. Vassiliki Manoussi & Soheil Shayegh & Massimo Tavoni, 2017. "Optimal Carbon Dioxide Removal in Face of Ocean Carbon Sink Feedback," Working Papers 2017.57, Fondazione Eni Enrico Mattei.
    2. Acemoglu, Daron & Rafey, Will, 2023. "Mirage on the horizon: Geoengineering and carbon taxation without commitment," Journal of Public Economics, Elsevier, vol. 219(C).
    3. Traeger, Christian P. & Meier, Felix D., 2023. "Uncertain Remedies to Fight Uncertain Consequences: The Case of Solar Geoengineering," RFF Working Paper Series 23-37, Resources for the Future.
    4. Wei Jin & Rick van der Ploeg & Lin Zhang, 2020. "Do We Still Need Carbon-Intensive Capital When Transitioning to a Green Economy?," CESifo Working Paper Series 8745, CESifo.
    5. Adam Michael Bauer & Cristian Proistosescu & Gernot Wagner, 2023. "Carbon Dioxide as a Risky Asset," CESifo Working Paper Series 10278, CESifo.
    6. Garth Heutel & Juan Moreno-Cruz & Katharine Ricke, 2016. "Climate Engineering Economics," Annual Review of Resource Economics, Annual Reviews, vol. 8(1), pages 99-118, October.
    7. Scott Knowles & Mark Skidmore, 2019. "A primer on weather and climate intervention for economists," CESifo Working Paper Series 7586, CESifo.
    8. Jin, Wei & Zhang, ZhongXiang, 2019. "Capital Accumulation, GreeParadox, and Stranded Assets: An Endogenous Growth Perspective," ETA: Economic Theory and Applications 281286, Fondazione Eni Enrico Mattei (FEEM).
    9. Joseph E. Aldy & Richard Zeckhauser, 2020. "Three prongs for prudent climate policy," Southern Economic Journal, John Wiley & Sons, vol. 87(1), pages 3-29, July.
    10. Heutel, Garth & Moreno-Cruz, Juan & Shayegh, Soheil, 2016. "Climate tipping points and solar geoengineering," Journal of Economic Behavior & Organization, Elsevier, vol. 132(PB), pages 19-45.
    11. Jin, Wei & Shi, Xunpeng & Zhang, Lin, 2021. "Energy transition without dirty capital stranding," Energy Economics, Elsevier, vol. 102(C).
    12. Anthony Wiskich, 2024. "Social Costs of Methane and Carbon Dioxide in a Tipping Climate," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 87(5), pages 1275-1293, May.

  14. Garth Heutel & Juan Moreno-Cruz & Katharine Ricke, 2015. "Climate Engineering Economics," NBER Working Papers 21711, National Bureau of Economic Research, Inc.

    Cited by:

    1. Emanuele Campiglio & Simon Dietz & Frank Venmans, 2022. "Optimal Climate Policy as If the Transition Matters," CESifo Working Paper Series 10139, CESifo.
    2. Todd Sandler, 2018. "Collective action and geoengineering," The Review of International Organizations, Springer, vol. 13(1), pages 105-125, March.
    3. Antonio Bento & Noah S. Miller & Mehreen Mookerjee & Edson R. Severnini, 2020. "A Unifying Approach to Measuring Climate Change Impacts and Adaptation," NBER Working Papers 27247, National Bureau of Economic Research, Inc.
    4. Heutel, Garth & Moreno-Cruz, Juan & Shayegh, Soheil, 2018. "Solar geoengineering, uncertainty, and the price of carbon," Journal of Environmental Economics and Management, Elsevier, vol. 87(C), pages 24-41.
    5. Waxman, Andrew R. & Corcoran, Sean & Robison, Andrew & Leibowicz, Benjamin D. & Olmstead, Sheila, 2021. "Leveraging scale economies and policy incentives: Carbon capture, utilization & storage in Gulf clusters," Energy Policy, Elsevier, vol. 156(C).
    6. Heyen, Daniel & Tavoni, Alessandro, 2024. "Strategic dimensions of solar geoengineering: economic theory and experiments," LSE Research Online Documents on Economics 124448, London School of Economics and Political Science, LSE Library.
    7. Benjamin K. Sovacool & Chad M. Baum & Sean Low, 2022. "Determining our climate policy future: expert opinions about negative emissions and solar radiation management pathways," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(8), pages 1-50, December.

  15. Garth Heutel & Juan Moreno Cruz & Soheil Shayegh, 2015. "Climate Tipping Points and Solar Geoengineering," NBER Working Papers 21589, National Bureau of Economic Research, Inc.

    Cited by:

    1. Emmerling, Johannes & Manoussi, Vassiliki & Xepapadeas, Anastasios, 2016. "Climate Engineering under Deep Uncertainty and Heterogeneity," MITP: Mitigation, Innovation and Transformation Pathways 244329, Fondazione Eni Enrico Mattei (FEEM).
    2. Moreno-Cruz, Juan B. & Wagner, Gernot & Keith, David w., 2017. "An Economic Anatomy of Optimal Climate Policy," Working Paper Series rwp17-028, Harvard University, John F. Kennedy School of Government.
    3. Traeger, Christian P. & Meier, Felix D., 2023. "Uncertain Remedies to Fight Uncertain Consequences: The Case of Solar Geoengineering," RFF Working Paper Series 23-37, Resources for the Future.
    4. Yongyang Cai, 2020. "The Role of Uncertainty in Controlling Climate Change," Papers 2003.01615, arXiv.org, revised Oct 2020.
    5. Fabien Prieur & Ingmar Schumacher & Martin Quaas, 2019. "Mitigation strategies under the threat of solar radiation management," Working Papers hal-04141891, HAL.
    6. Christos Karydas & Anastasios Xepapadeas, 2019. "Climate change risks: pricing and portfolio allocation," CER-ETH Economics working paper series 19/327, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    7. Wei Jin & Rick van der Ploeg & Lin Zhang, 2020. "Do We Still Need Carbon-Intensive Capital When Transitioning to a Green Economy?," CESifo Working Paper Series 8745, CESifo.
    8. Manoussi, Vassiliki & Xepapadeas, Anastasios & Emmerling, Johannes, 2018. "Climate engineering under deep uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 94(C), pages 207-224.
    9. Heutel, Garth & Moreno-Cruz, Juan & Shayegh, Soheil, 2018. "Solar geoengineering, uncertainty, and the price of carbon," Journal of Environmental Economics and Management, Elsevier, vol. 87(C), pages 24-41.
    10. William Brock & Anastasios Xepapadeas, 2019. "Regional Climate Policy under Deep Uncertainty: Robust Control, Hot Spots and Learning," DEOS Working Papers 1903, Athens University of Economics and Business.
    11. Brock, William & Xepapadeas, Anastasios, 2021. "Regional climate policy under deep uncertainty: robust control and distributional concerns," Environment and Development Economics, Cambridge University Press, vol. 26(3), pages 211-238, June.
    12. Garth Heutel & Juan Moreno-Cruz & Katharine Ricke, 2016. "Climate Engineering Economics," Annual Review of Resource Economics, Annual Reviews, vol. 8(1), pages 99-118, October.
    13. Sovacool, Benjamin K. & Baum, Chad M. & Low, Sean, 2023. "Beyond climate stabilization: Exploring the perceived sociotechnical co-impacts of carbon removal and solar geoengineering," Ecological Economics, Elsevier, vol. 204(PA).
    14. Sandra Gschnaller, 2020. "The albedo loss from the melting of the Greenland ice sheet and the social cost of carbon," Climatic Change, Springer, vol. 163(4), pages 2201-2231, December.
    15. Jin, Wei & Zhang, ZhongXiang, 2019. "Capital Accumulation, GreeParadox, and Stranded Assets: An Endogenous Growth Perspective," ETA: Economic Theory and Applications 281286, Fondazione Eni Enrico Mattei (FEEM).
    16. Sandra Gschnaller, 2020. "The Albedo Loss from the Melting of the Greenland Ice Sheet and the Social Cost of Carbon," ifo Working Paper Series 332, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    17. Moreno-Cruz, Juan B. & Smulders, Sjak, 2017. "Revisiting the economics of climate change: the role of geoengineering," Research in Economics, Elsevier, vol. 71(2), pages 212-224.
    18. Jin, Wei & Shi, Xunpeng & Zhang, Lin, 2021. "Energy transition without dirty capital stranding," Energy Economics, Elsevier, vol. 102(C).
    19. Johannes Emmerling & Ulrike Kornek & Valentina Bosetti & Kai Lessmann, 2021. "Climate thresholds and heterogeneous regions: Implications for coalition formation," The Review of International Organizations, Springer, vol. 16(2), pages 293-316, April.
    20. William Brock & Anastasios Xepapadeas, 2019. "Regional Climate Policy under Deep Uncertainty," DEOS Working Papers 1901, Athens University of Economics and Business.
    21. Todd L. Cherry & Stephan Kroll & David M. McEvoy, 2023. "Climate cooperation with risky solar geoengineering," Climatic Change, Springer, vol. 176(10), pages 1-14, October.

  16. Goeschl, Timo & Heyen, Daniel & Moreno-Cruz, Juan, 2013. "The Intergenerational Transfer of Solar Radiation Management Capabilities and Atmospheric Carbon Stocks," Working Papers 0540, University of Heidelberg, Department of Economics.

    Cited by:

    1. Dengler, Sebastian & Gerlagh, Reyer & Trautmann, Stefan T. & van de Kuilen, Gijs, 2017. "Climate Policy Commitment Devices," Discussion Paper 2017-036, Tilburg University, Center for Economic Research.
    2. Emmerling, Johannes & Manoussi, Vassiliki & Xepapadeas, Anastasios, 2016. "Climate Engineering under Deep Uncertainty and Heterogeneity," MITP: Mitigation, Innovation and Transformation Pathways 244329, Fondazione Eni Enrico Mattei (FEEM).
    3. Heyen, Daniel, 2015. "Strategic Conflicts on the Horizon: R&D Incentives for Environmental Technologies," Working Papers 0584, University of Heidelberg, Department of Economics.
    4. Ming, Tingzhen & de_Richter, Renaud & Liu, Wei & Caillol, Sylvain, 2014. "Fighting global warming by climate engineering: Is the Earth radiation management and the solar radiation management any option for fighting climate change?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 792-834.
    5. Daniel Heyen, 2016. "Strategic Conflicts On The Horizon: R&D Incentives For Environmental Technologies," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 7(04), pages 1-27, November.
    6. Emmerling, Johannes & Tavoni, Massimo, 2017. "Quantifying Non-cooperative Climate Engineering," MITP: Mitigation, Innovation and Transformation Pathways 266289, Fondazione Eni Enrico Mattei (FEEM).
    7. Buchholz Wolfgang & Heindl Peter, 2015. "Ökonomische Herausforderungen des Klimawandels," Perspektiven der Wirtschaftspolitik, De Gruyter, vol. 16(4), pages 324-350, December.
    8. Heyen, Daniel, 2016. "Strategic conflicts on the horizon: R&D incentives for environmental technologies," LSE Research Online Documents on Economics 68104, London School of Economics and Political Science, LSE Library.
    9. Todd Sandler, 2018. "Collective action and geoengineering," The Review of International Organizations, Springer, vol. 13(1), pages 105-125, March.
    10. Manoussi, Vassiliki & Xepapadeas, Anastasios & Emmerling, Johannes, 2018. "Climate engineering under deep uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 94(C), pages 207-224.
    11. Piergiuseppe Pezzoli & Johannes Emmerling & Massimo Tavoni, 2023. "SRM on the table: the role of geoengineering for the stability and effectiveness of climate coalitions," Climatic Change, Springer, vol. 176(10), pages 1-21, October.
    12. Garth Heutel & Juan Moreno-Cruz & Katharine Ricke, 2016. "Climate Engineering Economics," Annual Review of Resource Economics, Annual Reviews, vol. 8(1), pages 99-118, October.
    13. Max Meulemann, 2017. "An Empirical Assessment Of Components Of Climate Architectures," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 8(04), pages 1-36, November.
    14. Dovern, Jonas & Harnisch, Sebastian & Klepper, Gernot & Platt, Ulrich & Oschlies, Andreas & Rickels, Wilfried, 2015. "Radiation Management: Gezielte Beeinflussung des globalen Strahlungshaushalts zur Kontrolle des anthropogenen Klimawandels," Kiel Discussion Papers 549/550, Kiel Institute for the World Economy (IfW Kiel).
    15. Quaas, Martin F. & Quaas, Johannes & Rickels, Wilfried & Boucher, Olivier, 2017. "Are there reasons against open-ended research into solar radiation management? A model of intergenerational decision-making under uncertainty," Journal of Environmental Economics and Management, Elsevier, vol. 84(C), pages 1-17.
    16. Oschlies, Andreas & Held, Hermann & Keller, David & Keller, Klaus & Mengis, Nadine & Quaas, Martin & Rickels, Wilfried & Schmidt, Hauke, 2017. "Indicators and Metrics for the Assessment of Climate Engineering," Open Access Publications from Kiel Institute for the World Economy 226354, Kiel Institute for the World Economy (IfW Kiel).
    17. Klepper, Gernot & Dovern, Jonas & Rickels, Wilfried & Barben, Daniel & Goeschl, Timo & Harnisch, Sebastian & Heyen, Daniel & Janich, Nina & Maas, Achim & Matzner, Nils & Scheffran, Jürgen & Uther, Ste, 2016. "Herausforderung Climate Engineering: Bewertung neuer Optionen für den Klimaschutz," Kieler Beiträge zur Wirtschaftspolitik 8, Kiel Institute for the World Economy (IfW Kiel).

  17. Juan Moreno-Cruz & M. Scott Taylor, 2013. "A Spatial Approach to Energy Economics," CESifo Working Paper Series 4173, CESifo.

    Cited by:

    1. Giacomo Benini & Adam Brandt & Valerio Dotti & Hassan El-Houjeiri, 2023. "The Economic and Environmental Consequences of the Petroleum Industry Extensive Margin," Working Papers 2023:14, Department of Economics, University of Venice "Ca' Foscari".
    2. Rainald Borck & Michael Pflüger, 2019. "Green cities? Urbanization, trade, and the environment," Journal of Regional Science, Wiley Blackwell, vol. 59(4), pages 743-766, September.
    3. M. Scott Taylor & Juan Moreno Cruz, "undated". "A Spatial Approach to Energy Economics," Working Papers 2014-68, Department of Economics, University of Calgary, revised 29 Sep 2014.
    4. Muhammad Shahbaz & Smile Dube & Ilhan Ozturk & Abdul Jalil, 2015. "Testing the Environmental Kuznets Curve Hypothesis in Portugal," International Journal of Energy Economics and Policy, Econjournals, vol. 5(2), pages 475-481.
    5. Nuno Carlos Leit o, 2015. "Energy Consumption and Foreign Direct Investment: A Panel Data Analysis for Portugal," International Journal of Energy Economics and Policy, Econjournals, vol. 5(1), pages 138-147.

  18. M. Scott Taylor & Juan Moreno Cruz, "undated". "Back to the Future of Green Powered Economies," Working Papers 2014-69, Department of Economics, University of Calgary, revised 29 Sep 2014.

    Cited by:

    1. Moreno-Cruz, Juan & Taylor, M. Scott, 2017. "An Energy-centric Theory of Agglomeration," Working papers 2017/01, Faculty of Business and Economics - University of Basel.
    2. M. Scott Taylor & Juan Moreno Cruz, "undated". "A Spatial Approach to Energy Economics," Working Papers 2014-68, Department of Economics, University of Calgary, revised 29 Sep 2014.
    3. Lagerlöf, Nils-Petter, 2016. "Born free," Journal of Development Economics, Elsevier, vol. 121(C), pages 1-10.
    4. Juan Moreno-Cruz & M. Scott Taylor, 2014. "A Spatial Approach to Energy Economics: Theory, Measurement and Empirics," CESifo Working Paper Series 4845, CESifo.
    5. McCombie, Charles & Jefferson, Michael, 2016. "Renewable and nuclear electricity: Comparison of environmental impacts," Energy Policy, Elsevier, vol. 96(C), pages 758-769.

Articles

  1. Motlaghzadeh, Kasra & Schweizer, Vanessa & Craik, Neil & Moreno-Cruz, Juan, 2023. "Key uncertainties behind global projections of direct air capture deployment," Applied Energy, Elsevier, vol. 348(C).

    Cited by:

    1. Andrea Amado & Koji Kotani & Makoto Kakinaka & Shunsuke Managi, 2023. "Carbon tax for cleaner-energy transition: A vignette experiment in Japan," Working Papers SDES-2023-6, Kochi University of Technology, School of Economics and Management, revised Oct 2023.
    2. Wang, Qian & Du, Caiyi & Zhang, Xueguang, 2024. "Direct air capture capacity configuration and cost allocation based on sharing mechanism," Applied Energy, Elsevier, vol. 374(C).
    3. Kamil Niesporek & Janusz Kotowicz & Oliwia Baszczeńska & Izabella Maj, 2024. "Performance Characteristics and Optimization of a Single-Stage Direct Air Capture Membrane System in Terms of Process Energy Intensity," Energies, MDPI, vol. 17(9), pages 1-15, April.
    4. Ünal, Emre & Keeley, Alexander Ryota & Köse, Nezir & Chapman, Andrew & Managi, Shunsuke, 2024. "The nexus between direct air capture technology and CO2 emissions in the transport sector," Applied Energy, Elsevier, vol. 363(C).
    5. Vahid Barahimi & Monica Ho & Eric Croiset, 2023. "From Lab to Fab: Development and Deployment of Direct Air Capture of CO 2," Energies, MDPI, vol. 16(17), pages 1-33, September.
    6. Lv, Zongze & Du, Hong & Xu, Shaojun & Deng, Tao & Ruan, Jiaqi & Qin, Changlei, 2024. "Techno-economic analysis on CO2 mitigation by integrated carbon capture and methanation," Applied Energy, Elsevier, vol. 355(C).

  2. Blackburn, Christopher J. & Moreno-Cruz, Juan, 2021. "Energy efficiency in general equilibrium with input–output linkages," Journal of Environmental Economics and Management, Elsevier, vol. 110(C).
    See citations under working paper version above.
  3. Caleb Robinson & Bistra Dilkina & Juan Moreno-Cruz, 2020. "Modeling migration patterns in the USA under sea level rise," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-15, January.

    Cited by:

    1. Cilali, Buket & Barker, Kash & González, Andrés D. & Salo, Ahti, 2024. "Two-stage stochastic program for environmental resettlement decision-making," Socio-Economic Planning Sciences, Elsevier, vol. 93(C).
    2. Evelyn G. Shu & Jeremy R. Porter & Mathew E. Hauer & Sebastian Sandoval Olascoaga & Jesse Gourevitch & Bradley Wilson & Mariah Pope & David Melecio-Vazquez & Edward Kearns, 2023. "Integrating climate change induced flood risk into future population projections," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

  4. Anthony R. Harding & Katharine Ricke & Daniel Heyen & Douglas G. MacMartin & Juan Moreno-Cruz, 2020. "Climate econometric models indicate solar geoengineering would reduce inter-country income inequality," Nature Communications, Nature, vol. 11(1), pages 1-9, December.

    Cited by:

    1. Jesse L. Reynolds, 2021. "Is solar geoengineering ungovernable? A critical assessment of governance challenges identified by the Intergovernmental Panel on Climate Change," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(2), March.
    2. Harding, Anthony & Keith, David & Yang, Wenchang & Vecchi, Gabriel, 2023. "Impact of Solar Geoengineering on Temperature-Attributable Mortality," RFF Working Paper Series 23-23, Resources for the Future.
    3. Eszter Baranyai & Ádám Banai, 2022. "Heat projections and mortgage characteristics: evidence from the USA," Climatic Change, Springer, vol. 175(3), pages 1-20, December.
    4. Heyen, Daniel & Tavoni, Alessandro, 2024. "Strategic dimensions of solar geoengineering: economic theory and experiments," LSE Research Online Documents on Economics 124448, London School of Economics and Political Science, LSE Library.
    5. Zhang, Yixiang & Fu, Bowen, 2023. "Social trust contributes to the reduction of urban carbon dioxide emissions," Energy, Elsevier, vol. 279(C).

  5. Rickels, Wilfried & Quaas, Martin F. & Ricke, Katharine & Quaas, Johannes & Moreno-Cruz, Juan & Smulders, Sjak, 2020. "Who turns the global thermostat and by how much?," Energy Economics, Elsevier, vol. 91(C).
    See citations under working paper version above.
  6. Christopher J. Blackburn & Mallory E. Flowers & Daniel C. Matisoff & Juan Moreno‐Cruz, 2020. "Do Pilot and Demonstration Projects Work? Evidence from a Green Building Program," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 39(4), pages 1100-1132, September.

    Cited by:

    1. Zejin Liu & Steven Van de Walle, 2022. "The role of demonstration projects as policy instruments in the development of nonprofit organizations: Beyond instrumentality," Public Administration & Development, Blackwell Publishing, vol. 42(4), pages 233-244, October.
    2. Hongyan Zhang & Lin Zhang & Ning Zhang, 2024. "When and Under What Conditions Does an Emission Trading Scheme Become Cost Effective?," The Energy Journal, , vol. 45(2), pages 261-294, March.
    3. Mallory Elise Flowers & Daniel C. Matisoff & Douglas S. Noonan, 2020. "In the LEED: Racing to the Top in Environmental Self‐Regulation," Business Strategy and the Environment, Wiley Blackwell, vol. 29(6), pages 2842-2856, September.

  7. Tsybina, Eve & Moreno-Cruz, Juan & Tereshin, Alexey, 2019. "Liberalisation lowers primary energy efficiency: Evidence from twin power systems," Energy, Elsevier, vol. 173(C), pages 423-435.

    Cited by:

    1. Pablo Ponce & Cristiana Oliveira & Viviana Álvarez & María de la Cruz del Río-Rama, 2020. "The Liberalization of the Internal Energy Market in the European Union: Evidence of Its Influence on Reducing Environmental Pollution," Energies, MDPI, vol. 13(22), pages 1-17, November.
    2. Hassan Ali & Han Phoumin & Beni Suryadi & Aitazaz A. Farooque & Raziq Yaqub, 2022. "Assessing ASEAN’s Liberalized Electricity Markets: The Case of Singapore and the Philippines," Sustainability, MDPI, vol. 14(18), pages 1-24, September.

  8. Cherniwchan, Jevan & Moreno-Cruz, Juan, 2019. "Maize and precolonial Africa," Journal of Development Economics, Elsevier, vol. 136(C), pages 137-150.
    See citations under working paper version above.
  9. Heyen, Daniel & Horton, Joshua & Moreno-Cruz, Juan, 2019. "Strategic implications of counter-geoengineering: Clash or cooperation?," Journal of Environmental Economics and Management, Elsevier, vol. 95(C), pages 153-177.
    See citations under working paper version above.
  10. Heutel, Garth & Moreno-Cruz, Juan & Shayegh, Soheil, 2018. "Solar geoengineering, uncertainty, and the price of carbon," Journal of Environmental Economics and Management, Elsevier, vol. 87(C), pages 24-41.
    See citations under working paper version above.
  11. Moreno-Cruz, Juan & Taylor, M. Scott, 2017. "An energy-centric theory of agglomeration," Journal of Environmental Economics and Management, Elsevier, vol. 84(C), pages 153-172.
    See citations under working paper version above.
  12. Moreno-Cruz, Juan B. & Smulders, Sjak, 2017. "Revisiting the economics of climate change: the role of geoengineering," Research in Economics, Elsevier, vol. 71(2), pages 212-224.

    Cited by:

    1. Moreno-Cruz, Juan B. & Wagner, Gernot & Keith, David w., 2017. "An Economic Anatomy of Optimal Climate Policy," Working Paper Series rwp17-028, Harvard University, John F. Kennedy School of Government.
    2. Kahn, Matthew E. & Zhao, Daxuan, 2018. "The impact of climate change skepticism on adaptation in a market economy," Research in Economics, Elsevier, vol. 72(2), pages 251-262.
    3. Fabien Prieur & Ingmar Schumacher & Martin Quaas, 2019. "Mitigation strategies under the threat of solar radiation management," Working Papers hal-04141891, HAL.
    4. Frederick Ploeg, 2018. "The safe carbon budget," Climatic Change, Springer, vol. 147(1), pages 47-59, March.
    5. Finus, Michael & Furini, Francesco, 2023. "Global climate governance in the light of geoengineering: A shot in the dark?," Journal of Environmental Economics and Management, Elsevier, vol. 122(C).
    6. Emmerling, Johannes & Tavoni, Massimo, 2017. "Quantifying Non-cooperative Climate Engineering," MITP: Mitigation, Innovation and Transformation Pathways 266289, Fondazione Eni Enrico Mattei (FEEM).
    7. Baran Doda, 2014. "Why is geoengineering so tempting?," GRI Working Papers 170, Grantham Research Institute on Climate Change and the Environment.
    8. Manoussi, Vassiliki & Xepapadeas, Anastasios & Emmerling, Johannes, 2018. "Climate engineering under deep uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 94(C), pages 207-224.
    9. Piergiuseppe Pezzoli & Johannes Emmerling & Massimo Tavoni, 2023. "SRM on the table: the role of geoengineering for the stability and effectiveness of climate coalitions," Climatic Change, Springer, vol. 176(10), pages 1-21, October.
    10. Jin, Wei & Zhang, ZhongXiang, 2019. "Capital Accumulation, GreeParadox, and Stranded Assets: An Endogenous Growth Perspective," ETA: Economic Theory and Applications 281286, Fondazione Eni Enrico Mattei (FEEM).
    11. Jin, Wei & Shi, Xunpeng & Zhang, Lin, 2021. "Energy transition without dirty capital stranding," Energy Economics, Elsevier, vol. 102(C).
    12. Olivier Sterck, 2011. "Geoengineering as an alternative to mitigation: specification and dynamic implications," Working Papers halshs-00635487, HAL.
    13. Klepper, Gernot & Dovern, Jonas & Rickels, Wilfried & Barben, Daniel & Goeschl, Timo & Harnisch, Sebastian & Heyen, Daniel & Janich, Nina & Maas, Achim & Matzner, Nils & Scheffran, Jürgen & Uther, Ste, 2016. "Herausforderung Climate Engineering: Bewertung neuer Optionen für den Klimaschutz," Kieler Beiträge zur Wirtschaftspolitik 8, Kiel Institute for the World Economy (IfW Kiel).

  13. Garth Heutel & Juan Moreno-Cruz & Katharine Ricke, 2016. "Climate Engineering Economics," Annual Review of Resource Economics, Annual Reviews, vol. 8(1), pages 99-118, October.
    See citations under working paper version above.
  14. Heutel, Garth & Moreno-Cruz, Juan & Shayegh, Soheil, 2016. "Climate tipping points and solar geoengineering," Journal of Economic Behavior & Organization, Elsevier, vol. 132(PB), pages 19-45.
    See citations under working paper version above.
  15. Macfarlane, Gregory S. & Garrow, Laurie A. & Moreno-Cruz, Juan, 2015. "Do Atlanta residents value MARTA? Selecting an autoregressive model to recover willingness to pay," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 214-230.

    Cited by:

    1. Xu, Tao & Zhang, Ming, 2016. "Tailoring empirical research on transit access premiums for planning applications," Transport Policy, Elsevier, vol. 51(C), pages 49-60.
    2. Shaw, F. Atiyya & Wang, Xinyi & Mokhtarian, Patricia L. & Watkins, Kari E., 2021. "Supplementing transportation data sources with targeted marketing data: Applications, integration, and internal validation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 149(C), pages 150-169.
    3. Xu, Tao & Zhang, Ming & Aditjandra, Paulus T., 2016. "The impact of urban rail transit on commercial property value: New evidence from Wuhan, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 91(C), pages 223-235.

  16. Moreno-Cruz, Juan B., 2015. "Mitigation and the geoengineering threat," Resource and Energy Economics, Elsevier, vol. 41(C), pages 248-263.

    Cited by:

    1. Acemoglu, Daron & Rafey, Will, 2023. "Mirage on the horizon: Geoengineering and carbon taxation without commitment," Journal of Public Economics, Elsevier, vol. 219(C).
    2. Martin L. Weitzman, 2015. "A Voting Architecture for the Governance of Free-Driver Externalities, with Application to Geoengineering," Scandinavian Journal of Economics, Wiley Blackwell, vol. 117(4), pages 1049-1068, October.
    3. Emmerling, Johannes & Manoussi, Vassiliki & Xepapadeas, Anastasios, 2016. "Climate Engineering under Deep Uncertainty and Heterogeneity," MITP: Mitigation, Innovation and Transformation Pathways 244329, Fondazione Eni Enrico Mattei (FEEM).
    4. Heyen, Daniel, 2015. "Strategic Conflicts on the Horizon: R&D Incentives for Environmental Technologies," Working Papers 0584, University of Heidelberg, Department of Economics.
    5. Moreno-Cruz, Juan B. & Wagner, Gernot & Keith, David w., 2017. "An Economic Anatomy of Optimal Climate Policy," Working Paper Series rwp17-028, Harvard University, John F. Kennedy School of Government.
    6. Richard S.J. Tol, 2016. "Distributional Implications of Geoengineering," Working Paper Series 08316, Department of Economics, University of Sussex Business School.
    7. Michael Finus & Francesco Furini, 2022. "Global Climate Governance in the Light of Geoengineering: A Shot in the Dark?," Graz Economics Papers 2022-02, University of Graz, Department of Economics.
    8. Daniel Heyen, 2016. "Strategic Conflicts On The Horizon: R&D Incentives For Environmental Technologies," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 7(04), pages 1-27, November.
    9. Fabien Prieur & Ingmar Schumacher & Martin Quaas, 2019. "Mitigation strategies under the threat of solar radiation management," Working Papers hal-04141891, HAL.
    10. Juan Moreno-Cruz & David Keith, 2013. "Climate policy under uncertainty: a case for solar geoengineering," Climatic Change, Springer, vol. 121(3), pages 431-444, December.
    11. Vassiliki Manoussi & Anastasios Xepapadeas, 2014. "Cooperation and Competition in Climate Change Policies: Mitigation and Climate Engineering when Countries are Asymmetric," Working Papers 2014.101, Fondazione Eni Enrico Mattei.
    12. Finus, Michael & Furini, Francesco, 2023. "Global climate governance in the light of geoengineering: A shot in the dark?," Journal of Environmental Economics and Management, Elsevier, vol. 122(C).
    13. Emmerling, Johannes & Tavoni, Massimo, 2017. "Quantifying Non-cooperative Climate Engineering," MITP: Mitigation, Innovation and Transformation Pathways 266289, Fondazione Eni Enrico Mattei (FEEM).
    14. Adrien Fabre & Gernot Wagner, 2020. "Availability of risky geoengineering can make an ambitious climate mitigation agreement more likely," PSE-Ecole d'économie de Paris (Postprint) halshs-04363061, HAL.
    15. Heyen, Daniel & Horton, Joshua & Moreno-Cruz, Juan, 2019. "Strategic implications of counter-geoengineering: clash or cooperation?," LSE Research Online Documents on Economics 100424, London School of Economics and Political Science, LSE Library.
    16. Heyen, Daniel, 2016. "Strategic conflicts on the horizon: R&D incentives for environmental technologies," LSE Research Online Documents on Economics 68104, London School of Economics and Political Science, LSE Library.
    17. Todd L. Cherry & Stephan Kroll & David M. McEvoy & David Campoverde, 2024. "Solar Geoengineering, Free-Driving and Conflict: An Experimental Investigation," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 87(4), pages 1045-1060, April.
    18. Todd Sandler, 2018. "Collective action and geoengineering," The Review of International Organizations, Springer, vol. 13(1), pages 105-125, March.
    19. Manoussi, Vassiliki & Xepapadeas, Anastasios & Emmerling, Johannes, 2018. "Climate engineering under deep uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 94(C), pages 207-224.
    20. Heutel, Garth & Moreno-Cruz, Juan & Shayegh, Soheil, 2018. "Solar geoengineering, uncertainty, and the price of carbon," Journal of Environmental Economics and Management, Elsevier, vol. 87(C), pages 24-41.
    21. Rickels, Wilfried & Quaas, Martin F. & Ricke, Katharine & Quaas, Johannes & Moreno-Cruz, Juan & Smulders, Sjak, 2020. "Who turns the global thermostat and by how much?," Energy Economics, Elsevier, vol. 91(C).
    22. Brian R. Copeland & M. Scott Taylor, 2017. "Environmental and resource economics: A Canadian retrospective," Canadian Journal of Economics, Canadian Economics Association, vol. 50(5), pages 1381-1413, December.
    23. Adam Millard-Ball, 2012. "The Tuvalu Syndrome," Climatic Change, Springer, vol. 110(3), pages 1047-1066, February.
    24. Jin, Wei & Zhang, ZhongXiang, 2019. "Capital Accumulation, GreeParadox, and Stranded Assets: An Endogenous Growth Perspective," ETA: Economic Theory and Applications 281286, Fondazione Eni Enrico Mattei (FEEM).
    25. Moreno-Cruz, Juan B. & Smulders, Sjak, 2017. "Revisiting the economics of climate change: the role of geoengineering," Research in Economics, Elsevier, vol. 71(2), pages 212-224.
    26. Heutel, Garth & Moreno-Cruz, Juan & Shayegh, Soheil, 2016. "Climate tipping points and solar geoengineering," Journal of Economic Behavior & Organization, Elsevier, vol. 132(PB), pages 19-45.
    27. Jin, Wei & Shi, Xunpeng & Zhang, Lin, 2021. "Energy transition without dirty capital stranding," Energy Economics, Elsevier, vol. 102(C).
    28. Todd L. Cherry & Steffen Kallbekken & Stephan Kroll & David M. McEvoy, 2021. "Does solar geoengineering crowd out climate change mitigation efforts? Evidence from a stated preference referendum on a carbon tax," Climatic Change, Springer, vol. 165(1), pages 1-8, March.
    29. Timo Goeschl & Daniel Heyen & Juan Moreno-Cruz, 2013. "The Intergenerational Transfer of Solar Radiation Management Capabilities and Atmospheric Carbon Stocks," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 56(1), pages 85-104, September.
    30. Todd L. Cherry & Stephan Kroll & David M. McEvoy, 2023. "Climate cooperation with risky solar geoengineering," Climatic Change, Springer, vol. 176(10), pages 1-14, October.
    31. Muhammet A. Bas & Aseem Mahajan, 2020. "Contesting the climate," Climatic Change, Springer, vol. 162(4), pages 1985-2002, October.

  17. Yu, Xuewei & Moreno-Cruz, Juan & Crittenden, John C., 2015. "Regional energy rebound effect: The impact of economy-wide and sector level energy efficiency improvement in Georgia, USA," Energy Policy, Elsevier, vol. 87(C), pages 250-259.

    Cited by:

    1. Zhou, Meifang & Liu, Yu & Feng, Shenghao & Liu, Yang & Lu, Yingying, 2018. "Decomposition of rebound effect: An energy-specific, general equilibrium analysis in the context of China," Applied Energy, Elsevier, vol. 221(C), pages 280-298.
    2. Jinping Zhang & Qiuru Lu & Li Guan & Xiaoying Wang, 2021. "Analysis of Factors Influencing Energy Efficiency Based on Spatial Quantile Autoregression: Evidence from the Panel Data in China," Energies, MDPI, vol. 14(2), pages 1-17, January.
    3. Ouyang, Xiaoling & Gao, Beiying & Du, Kerui & Du, Gang, 2018. "Industrial sectors' energy rebound effect: An empirical study of Yangtze River Delta urban agglomeration," Energy, Elsevier, vol. 145(C), pages 408-416.
    4. Xu, Mengmeng & Lin, Boqiang & Wang, Siquan, 2021. "Towards energy conservation by improving energy efficiency? Evidence from China’s metallurgical industry," Energy, Elsevier, vol. 216(C).
    5. Xue, Yan & Tang, Chang & Wu, Haitao & Liu, Jianmin & Hao, Yu, 2022. "The emerging driving force of energy consumption in China: Does digital economy development matter?," Energy Policy, Elsevier, vol. 165(C).
    6. Jafari, Mahboubeh & Stern, David I. & Bruns, Stephan B., 2022. "How large is the economy-wide rebound effect in middle income countries? Evidence from Iran," Ecological Economics, Elsevier, vol. 193(C).
    7. Christopher Blackburn & Juan Moreno-Cruz, 2020. "Energy Efficiency in General Equilibrium with Input-Output Linkages," BEA Working Papers 0172, Bureau of Economic Analysis.
    8. Farah Mneimneh & Hasan Ghazzawi & Seeram Ramakrishna, 2023. "Review Study of Energy Efficiency Measures in Favor of Reducing Carbon Footprint of Electricity and Power, Buildings, and Transportation," Circular Economy and Sustainability, Springer, vol. 3(1), pages 447-474, March.
    9. Brockway, Paul E. & Sorrell, Steve & Semieniuk, Gregor & Heun, Matthew Kuperus & Court, Victor, 2021. "Energy efficiency and economy-wide rebound effects: A review of the evidence and its implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    10. Matthew E. Oliver & Juan Moreno-Cruz & Ross C. Beppler, 2019. "Microeconomics of the rebound effect for residential solar photovoltaic systems," CESifo Working Paper Series 7635, CESifo.
    11. Cansino, José M. & Ordóñez, Manuel & Prieto, Manuela, 2022. "Decomposition and measurement of the rebound effect: The case of energy efficiency improvements in Spain," Applied Energy, Elsevier, vol. 306(PA).
    12. Jinpeng Liu & Li Wang & Mohan Qiu & Jiang Zhu, 2016. "Promotion Potentiality and Optimal Strategies Analysis of Provincial Energy Efficiency in China," Sustainability, MDPI, vol. 8(8), pages 1-17, August.
    13. Jiang Zhu & Zhenyu Zhao, 2017. "Chinese Electric Power Development Coordination Analysis on Resource, Production and Consumption: A Provincial Case Study," Sustainability, MDPI, vol. 9(2), pages 1-19, February.
    14. Lu, Yuhai & Gong, Mincheng & Lu, Linzhuo & Wang, Yaqin & Wang, Yang, 2024. "Urban polycentrism and total-factor energy efficiency: An analysis based on the night light data," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    15. Kulmer, Veronika & Seebauer, Sebastian, 2019. "How robust are estimates of the rebound effect of energy efficiency improvements? A sensitivity analysis of consumer heterogeneity and elasticities," Energy Policy, Elsevier, vol. 132(C), pages 1-14.
    16. Miao, Zhuang & Chen, Xiaodong, 2022. "Combining parametric and non-parametric approach, variable & source -specific productivity changes and rebound effect of energy & environment," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    17. Li, Ke & Jiang, Zhujun, 2016. "The impacts of removing energy subsidies on economy-wide rebound effects in China: An input-output analysis," Energy Policy, Elsevier, vol. 98(C), pages 62-72.
    18. Andrade, Cássio Tersandro de Castro & Pontes, Ricardo Silva Thé, 2017. "Economic analysis of Brazilian policies for energy efficient electric motors," Energy Policy, Elsevier, vol. 106(C), pages 315-325.
    19. Wang, Xiaolei & Wen, Xiaohui & Xie, Chunping, 2018. "An evaluation of technical progress and energy rebound effects in China's iron & steel industry," Energy Policy, Elsevier, vol. 123(C), pages 259-265.
    20. Khoshkalam Khosroshahi, Musa & Sayadi, Mohammad, 2020. "Tracking the sources of rebound effect resulting from the efficiency improvement in petrol, diesel, natural gas and electricity consumption; A CGE analysis for Iran," Energy, Elsevier, vol. 197(C).
    21. Klimenko, V.V. & Ratner, S.V. & Tereshin, A.G., 2021. "Constraints imposed by key-material resources on renewable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    22. Toroghi, Shahaboddin H. & Oliver, Matthew E., 2019. "Framework for estimation of the direct rebound effect for residential photovoltaic systems," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    23. Rodríguez, M. & Teotónio, C. & Roebeling, P. & Fortes, P., 2023. "Targeting energy savings? Better on primary than final energy and less on intensity metrics," Energy Economics, Elsevier, vol. 125(C).
    24. Ensieh Shojaeddini, 2020. "Heterogeneity in the Rebound Effect: Evidence from Efficient Lighting Subsidies," Working Papers 2020-07, Colorado School of Mines, Division of Economics and Business.
    25. Cansino, José M. & Román-Collado, Rocío & Merchán, José, 2019. "Do Spanish energy efficiency actions trigger JEVON’S paradox?," Energy, Elsevier, vol. 181(C), pages 760-770.
    26. Gioele Figus & J Kim Swales & Karen Turner, 2017. "Can a reduction in fuel use result from an endogenous technical progress in motor vehicles? A partial and general equilibrium analysis," Working Papers 1705, University of Strathclyde Business School, Department of Economics.
    27. Wang, Jiayu & Yu, Shuao & Liu, Tiansen, 2021. "A theoretical analysis of the direct rebound effect caused by energy efficiency improvement of private consumers," Economic Analysis and Policy, Elsevier, vol. 69(C), pages 171-181.
    28. Kong, Li & Mu, Xianzhong & Hu, Guangwen & Tu, Chuang, 2023. "Will energy efficiency improvements reduce energy consumption? Perspective of rebound effect and evidence from beijing," Energy, Elsevier, vol. 263(PA).
    29. Gioele Figus & Patrizio Lecca & Peter McGregor & Karen Turner, 2017. "Energy efficiency as an instrument of regional development policy? Trading-off the benefits of an economic stimulus and energy rebound effects," Working Papers 1702, University of Strathclyde Business School, Department of Economics.
    30. Jarke-Neuert, Johannes & Perino, Grischa, 2020. "Energy efficiency promotion backfires under cap-and-trade," Resource and Energy Economics, Elsevier, vol. 62(C).
    31. Jin, Taeyoung & Kim, Jinsoo, 2019. "A new approach for assessing the macroeconomic growth energy rebound effect," Applied Energy, Elsevier, vol. 239(C), pages 192-200.
    32. Iyke, Bernard Njindan & Tran, Vuong Thao & Narayan, Paresh Kumar, 2021. "Can energy security predict energy stock returns?," Energy Economics, Elsevier, vol. 94(C).
    33. Figge, Frank & Thorpe, Andrea Stevenson, 2019. "The symbiotic rebound effect in the circular economy," Ecological Economics, Elsevier, vol. 163(C), pages 61-69.

  18. Timo Goeschl & Daniel Heyen & Juan Moreno-Cruz, 2013. "The Intergenerational Transfer of Solar Radiation Management Capabilities and Atmospheric Carbon Stocks," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 56(1), pages 85-104, September.
    See citations under working paper version above.
  19. Juan Moreno-Cruz & David Keith, 2013. "Climate policy under uncertainty: a case for solar geoengineering," Climatic Change, Springer, vol. 121(3), pages 431-444, December.

    Cited by:

    1. Erick C. Jones & Benjamin D. Leibowicz, 2022. "Climate risk management in agriculture using alternative electricity and water resources: a stochastic programming framework," Environment Systems and Decisions, Springer, vol. 42(1), pages 117-135, March.
    2. Acemoglu, Daron & Rafey, Will, 2023. "Mirage on the horizon: Geoengineering and carbon taxation without commitment," Journal of Public Economics, Elsevier, vol. 219(C).
    3. Moreno-Cruz, Juan B. & Wagner, Gernot & Keith, David w., 2017. "An Economic Anatomy of Optimal Climate Policy," Working Paper Series rwp17-028, Harvard University, John F. Kennedy School of Government.
    4. Elnaz Roshan & Mohammad M. Khabbazan & Hermann Held, 2019. "Cost-Risk Trade-Off of Mitigation and Solar Geoengineering: Considering Regional Disparities Under Probabilistic Climate Sensitivity," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(1), pages 263-279, January.
    5. Traeger, Christian P. & Meier, Felix D., 2023. "Uncertain Remedies to Fight Uncertain Consequences: The Case of Solar Geoengineering," RFF Working Paper Series 23-37, Resources for the Future.
    6. Emmerling, Johannes & Tavoni, Massimo, 2013. "Geoengineering and Abatement: A “flat” Relationship under Uncertainty," Climate Change and Sustainable Development 148917, Fondazione Eni Enrico Mattei (FEEM).
    7. Vassiliki Manoussi & Anastasios Xepapadeas, 2014. "Cooperation and Competition in Climate Change Policies: Mitigation and Climate Engineering when Countries are Asymmetric," Working Papers 2014.101, Fondazione Eni Enrico Mattei.
    8. Emmerling, Johannes & Tavoni, Massimo, 2017. "Quantifying Non-cooperative Climate Engineering," MITP: Mitigation, Innovation and Transformation Pathways 266289, Fondazione Eni Enrico Mattei (FEEM).
    9. Markus Eigruber & Franz Wirl, 2018. "Climate Engineering in an Interconnected World: The Role of Tariffs," Dynamic Games and Applications, Springer, vol. 8(3), pages 573-587, September.
    10. Vasiliki Manousi & Anastasios Xepapadeas, 2013. "Mitigation and Solar Radiation Management in Climate Change Policies," DEOS Working Papers 1323, Athens University of Economics and Business.
    11. Baran Doda, 2014. "Why is geoengineering so tempting?," GRI Working Papers 170, Grantham Research Institute on Climate Change and the Environment.
    12. Khara Grieger & Jonathan B. Wiener & Jennifer Kuzma, 2024. "Improving risk governance strategies via learning: a comparative analysis of solar radiation modification and gene drives," Environment Systems and Decisions, Springer, vol. 44(4), pages 1054-1067, December.
    13. Heutel, Garth & Moreno-Cruz, Juan & Shayegh, Soheil, 2018. "Solar geoengineering, uncertainty, and the price of carbon," Journal of Environmental Economics and Management, Elsevier, vol. 87(C), pages 24-41.
    14. Garth Heutel & Juan Moreno-Cruz & Katharine Ricke, 2016. "Climate Engineering Economics," Annual Review of Resource Economics, Annual Reviews, vol. 8(1), pages 99-118, October.
    15. Johannes Emmerling & Massimo Tavoni, 2018. "Climate Engineering and Abatement: A ‘flat’ Relationship Under Uncertainty," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 69(2), pages 395-415, February.
    16. Brian R. Copeland & M. Scott Taylor, 2017. "Environmental and resource economics: A Canadian retrospective," Canadian Journal of Economics, Canadian Economics Association, vol. 50(5), pages 1381-1413, December.
    17. Jin, Wei & Zhang, ZhongXiang, 2019. "Capital Accumulation, GreeParadox, and Stranded Assets: An Endogenous Growth Perspective," ETA: Economic Theory and Applications 281286, Fondazione Eni Enrico Mattei (FEEM).
    18. Tommi Ekholm & Hannele Korhonen, 2016. "Climate change mitigation strategy under an uncertain Solar Radiation Management possibility," Climatic Change, Springer, vol. 139(3), pages 503-515, December.
    19. Moreno-Cruz, Juan B. & Smulders, Sjak, 2017. "Revisiting the economics of climate change: the role of geoengineering," Research in Economics, Elsevier, vol. 71(2), pages 212-224.
    20. Dovern, Jonas & Harnisch, Sebastian & Klepper, Gernot & Platt, Ulrich & Oschlies, Andreas & Rickels, Wilfried, 2015. "Radiation Management: Gezielte Beeinflussung des globalen Strahlungshaushalts zur Kontrolle des anthropogenen Klimawandels," Kiel Discussion Papers 549/550, Kiel Institute for the World Economy (IfW Kiel).
    21. Heutel, Garth & Moreno-Cruz, Juan & Shayegh, Soheil, 2016. "Climate tipping points and solar geoengineering," Journal of Economic Behavior & Organization, Elsevier, vol. 132(PB), pages 19-45.
    22. Quaas, Martin F. & Quaas, Johannes & Rickels, Wilfried & Boucher, Olivier, 2017. "Are there reasons against open-ended research into solar radiation management? A model of intergenerational decision-making under uncertainty," Journal of Environmental Economics and Management, Elsevier, vol. 84(C), pages 1-17.
    23. Jin, Wei & Shi, Xunpeng & Zhang, Lin, 2021. "Energy transition without dirty capital stranding," Energy Economics, Elsevier, vol. 102(C).
    24. Ahlvik, Lassi & Iho, Antti, 2018. "Optimal geoengineering experiments," Journal of Environmental Economics and Management, Elsevier, vol. 92(C), pages 148-168.
    25. Olivier Sterck, 2011. "Geoengineering as an alternative to mitigation: specification and dynamic implications," Working Papers halshs-00635487, HAL.
    26. Moreno-Cruz, Juan B., 2015. "Mitigation and the geoengineering threat," Resource and Energy Economics, Elsevier, vol. 41(C), pages 248-263.
    27. Timo Goeschl & Daniel Heyen & Juan Moreno-Cruz, 2013. "The Intergenerational Transfer of Solar Radiation Management Capabilities and Atmospheric Carbon Stocks," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 56(1), pages 85-104, September.
    28. Brian R. Copeland & M. Scott Taylor, 2017. "Environmental and resource economics: A Canadian retrospective," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 50(5), pages 1381-1413, December.
    29. Klepper, Gernot & Dovern, Jonas & Rickels, Wilfried & Barben, Daniel & Goeschl, Timo & Harnisch, Sebastian & Heyen, Daniel & Janich, Nina & Maas, Achim & Matzner, Nils & Scheffran, Jürgen & Uther, Ste, 2016. "Herausforderung Climate Engineering: Bewertung neuer Optionen für den Klimaschutz," Kieler Beiträge zur Wirtschaftspolitik 8, Kiel Institute for the World Economy (IfW Kiel).

  20. Juan Moreno-Cruz & Katharine Ricke & David Keith, 2012. "A simple model to account for regional inequalities in the effectiveness of solar radiation management," Climatic Change, Springer, vol. 110(3), pages 649-668, February.

    Cited by:

    1. Wylie Carr & Christopher Preston & Laurie Yung & Bronislaw Szerszynski & David Keith & Ashley Mercer, 2013. "Public engagement on solar radiation management and why it needs to happen now," Climatic Change, Springer, vol. 121(3), pages 567-577, December.
    2. Alessandro Tavoni & Simon Levin, 2014. "Managing the climate commons at the nexus of ecology, behaviour and economics," Nature Climate Change, Nature, vol. 4(12), pages 1057-1063, December.
    3. Pan, Tao & Wu, Shaohong & Dai, Erfu & Liu, Yujie, 2013. "Estimating the daily global solar radiation spatial distribution from diurnal temperature ranges over the Tibetan Plateau in China," Applied Energy, Elsevier, vol. 107(C), pages 384-393.
    4. Elnaz Roshan & Mohammad M. Khabbazan & Hermann Held, 2019. "Cost-Risk Trade-Off of Mitigation and Solar Geoengineering: Considering Regional Disparities Under Probabilistic Climate Sensitivity," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(1), pages 263-279, January.
    5. Fabien Prieur & Ingmar Schumacher & Martin Quaas, 2019. "Mitigation strategies under the threat of solar radiation management," Working Papers hal-04141891, HAL.
    6. Harding, Anthony & Keith, David & Yang, Wenchang & Vecchi, Gabriel, 2023. "Impact of Solar Geoengineering on Temperature-Attributable Mortality," RFF Working Paper Series 23-23, Resources for the Future.
    7. Juan Moreno-Cruz & David Keith, 2013. "Climate policy under uncertainty: a case for solar geoengineering," Climatic Change, Springer, vol. 121(3), pages 431-444, December.
    8. Daniel Heyen & Thilo Wiertz & Peter Irvine, 2015. "Regional disparities in SRM impacts: the challenge of diverging preferences," Climatic Change, Springer, vol. 133(4), pages 557-563, December.
    9. Emmerling, Johannes & Tavoni, Massimo, 2013. "Geoengineering and Abatement: A “flat” Relationship under Uncertainty," Climate Change and Sustainable Development 148917, Fondazione Eni Enrico Mattei (FEEM).
    10. Heyen, Daniel & Horton, Joshua & Moreno-Cruz, Juan, 2019. "Strategic implications of counter-geoengineering: clash or cooperation?," LSE Research Online Documents on Economics 100424, London School of Economics and Political Science, LSE Library.
    11. Wylie A. Carr & Laurie Yung, 2018. "Perceptions of climate engineering in the South Pacific, Sub-Saharan Africa, and North American Arctic," Climatic Change, Springer, vol. 147(1), pages 119-132, March.
    12. Nadine Mengis & David P. Keller & Wilfried Rickels & Martin Quaas & Andreas Oschlies, 2019. "Climate engineering–induced changes in correlations between Earth system variables—implications for appropriate indicator selection," Climatic Change, Springer, vol. 153(3), pages 305-322, April.
    13. Todd Sandler, 2018. "Collective action and geoengineering," The Review of International Organizations, Springer, vol. 13(1), pages 105-125, March.
    14. Manoussi, Vassiliki & Xepapadeas, Anastasios & Emmerling, Johannes, 2018. "Climate engineering under deep uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 94(C), pages 207-224.
    15. Heutel, Garth & Moreno-Cruz, Juan & Shayegh, Soheil, 2018. "Solar geoengineering, uncertainty, and the price of carbon," Journal of Environmental Economics and Management, Elsevier, vol. 87(C), pages 24-41.
    16. Pfrommer, Tobias, 2018. "A Model of Solar Radiation Management Liability," Working Papers 0644, University of Heidelberg, Department of Economics.
    17. Garth Heutel & Juan Moreno-Cruz & Katharine Ricke, 2016. "Climate Engineering Economics," Annual Review of Resource Economics, Annual Reviews, vol. 8(1), pages 99-118, October.
    18. Rickels, Wilfried & Quaas, Martin F. & Ricke, Katharine & Quaas, Johannes & Moreno-Cruz, Juan & Smulders, Sjak, 2020. "Who turns the global thermostat and by how much?," Energy Economics, Elsevier, vol. 91(C).
    19. Dipu, Sudhakar & Quaas, Johannes & Quaas, Martin & Rickels, Wilfried & Mülmenstädt, Johannes & Boucher, Olivier, 2021. "Substantial Climate Response outside the Target Area in an Idealized Experiment of Regional Radiation Management," Open Access Publications from Kiel Institute for the World Economy 240193, Kiel Institute for the World Economy (IfW Kiel).
    20. Johannes Emmerling & Massimo Tavoni, 2018. "Climate Engineering and Abatement: A ‘flat’ Relationship Under Uncertainty," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 69(2), pages 395-415, February.
    21. Tommi Ekholm & Hannele Korhonen, 2016. "Climate change mitigation strategy under an uncertain Solar Radiation Management possibility," Climatic Change, Springer, vol. 139(3), pages 503-515, December.
    22. Dovern, Jonas & Harnisch, Sebastian & Klepper, Gernot & Platt, Ulrich & Oschlies, Andreas & Rickels, Wilfried, 2015. "Radiation Management: Gezielte Beeinflussung des globalen Strahlungshaushalts zur Kontrolle des anthropogenen Klimawandels," Kiel Discussion Papers 549/550, Kiel Institute for the World Economy (IfW Kiel).
    23. Jane A. Flegal & Aarti Gupta, 2018. "Evoking equity as a rationale for solar geoengineering research? Scrutinizing emerging expert visions of equity," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 18(1), pages 45-61, February.
    24. Timo Goeschl & Daniel Heyen & Juan Moreno-Cruz, 2013. "The Intergenerational Transfer of Solar Radiation Management Capabilities and Atmospheric Carbon Stocks," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 56(1), pages 85-104, September.
    25. Oschlies, Andreas & Held, Hermann & Keller, David & Keller, Klaus & Mengis, Nadine & Quaas, Martin & Rickels, Wilfried & Schmidt, Hauke, 2017. "Indicators and Metrics for the Assessment of Climate Engineering," Open Access Publications from Kiel Institute for the World Economy 226354, Kiel Institute for the World Economy (IfW Kiel).
    26. Pfrommer, Tobias, 2018. "Diverging Regional Climate Preferences and the Assessment of Solar Geoengineering," Working Papers 0654, University of Heidelberg, Department of Economics.
    27. MacMartin, Douglas G. & Kravitz, Ben & Keith, David, 2014. "Geoengineering: The world's largest control problem," Scholarly Articles 23936193, Harvard Kennedy School of Government.

  21. David Keith & Juan Moreno-Cruz, 2011. "Pitfalls of coal peak prediction," Nature, Nature, vol. 469(7331), pages 472-472, January.

    Cited by:

    1. Syed Aziz Ur Rehman & Yanpeng Cai & Nayyar Hussain Mirjat & Gordhan Das Walasai & Izaz Ali Shah & Sharafat Ali, 2017. "The Future of Sustainable Energy Production in Pakistan: A System Dynamics-Based Approach for Estimating Hubbert Peaks," Energies, MDPI, vol. 10(11), pages 1-24, November.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.