IDEAS home Printed from https://ideas.repec.org/p/ags/feemso/150372.html
   My bibliography  Save this paper

Mitigation and Solar Radiation Management in Climate Change Policies

Author

Listed:
  • Manousi, Vasiliki
  • Anastasios, Xepapadeas

Abstract

We couple a spatially homogeneous energy balance climate model with an economic growth model which incorporates two potential policies against climate change: mitigation, which is the traditional policy, and geoengineering. We analyze the optimal policy mix of geoengineering and mitigation in both a cooperative and a noncooperative framework, in which we study open loop and feedback solutions. Our results suggests that greenhouse gas accumulation is relatively higher when geoengineering policies are undertaken, and that at noncooperative solutions incentives for geoengineering are relative stronger. A disruption of geoengineering efforts at a steady state will cause an upward jump in global temperature.

Suggested Citation

  • Manousi, Vasiliki & Anastasios, Xepapadeas, 2013. "Mitigation and Solar Radiation Management in Climate Change Policies," Economy and Society 150372, Fondazione Eni Enrico Mattei (FEEM).
  • Handle: RePEc:ags:feemso:150372
    DOI: 10.22004/ag.econ.150372
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/150372/files/NDL2013-041.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.150372?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ordás Criado, C. & Valente, S. & Stengos, T., 2011. "Growth and pollution convergence: Theory and evidence," Journal of Environmental Economics and Management, Elsevier, vol. 62(2), pages 199-214, September.
    2. Frederick Ploeg & Aart Zeeuw, 1992. "International aspects of pollution control," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 2(2), pages 117-139, March.
    3. Boucekkine, Raouf & Camacho, Carmen & Zou, Benteng, 2009. "Bridging The Gap Between Growth Theory And The New Economic Geography: The Spatial Ramsey Model," Macroeconomic Dynamics, Cambridge University Press, vol. 13(1), pages 20-45, February.
    4. Gramstad, Kjetil & Tjøtta, Sigve, 2010. "Climate engineering: cost benefit and beyond," MPRA Paper 27302, University Library of Munich, Germany.
    5. Brock, William & Engström, Gustav & Xepapadeas, Anastasios, 2014. "Spatial climate-economic models in the design of optimal climate policies across locations," European Economic Review, Elsevier, vol. 69(C), pages 78-103.
    6. Scott Barrett, 2008. "The Incredible Economics of Geoengineering," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 39(1), pages 45-54, January.
    7. Martin L. Weitzman, 2015. "A Voting Architecture for the Governance of Free-Driver Externalities, with Application to Geoengineering," Scandinavian Journal of Economics, Wiley Blackwell, vol. 117(4), pages 1049-1068, October.
    8. Juan Moreno-Cruz & David Keith, 2013. "Climate policy under uncertainty: a case for solar geoengineering," Climatic Change, Springer, vol. 121(3), pages 431-444, December.
    9. Xepapadeas, A. P., 1992. "Environmental policy design and dynamic nonpoint-source pollution," Journal of Environmental Economics and Management, Elsevier, vol. 23(1), pages 22-39, July.
    10. Roughgarden, Tim & Schneider, Stephen H., 1999. "Climate change policy: quantifying uncertainties for damages and optimal carbon taxes," Energy Policy, Elsevier, vol. 27(7), pages 415-429, July.
    11. Kossioris, G. & Plexousakis, M. & Xepapadeas, A. & de Zeeuw, A. & Mäler, K.-G., 2008. "Feedback Nash equilibria for non-linear differential games in pollution control," Journal of Economic Dynamics and Control, Elsevier, vol. 32(4), pages 1312-1331, April.
    12. Tahvonen Olli & Kuuluvainen Jari, 1993. "Economic Growth, Pollution, and Renewable Resources," Journal of Environmental Economics and Management, Elsevier, vol. 24(2), pages 101-118, March.
    13. William Brock & M. Taylor, 2010. "The Green Solow model," Journal of Economic Growth, Springer, vol. 15(2), pages 127-153, June.
    14. William R. Cline, 1992. "Economics of Global Warming, The," Peterson Institute Press: All Books, Peterson Institute for International Economics, number 39, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baran Doda, 2014. "Why is geoengineering so tempting?," GRI Working Papers 170, Grantham Research Institute on Climate Change and the Environment.
    2. Vassiliki Manoussi & Anastasios Xepapadeas, 2014. "Cooperation and Competition in Climate Change Policies: Mitigation and Climate Engineering when Countries are Asymmetric," DEOS Working Papers 1408, Athens University of Economics and Business.
    3. Brock, William A. & Engström, Gustav & Grass, Dieter & Xepapadeas, Anastasios, 2013. "Energy balance climate models and general equilibrium optimal mitigation policies," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2371-2396.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Johannes Emmerling & Massimo Tavoni, 2017. "Quantifying Non-cooperative Climate Engineering," Working Papers 2017.58, Fondazione Eni Enrico Mattei.
    2. W. A. Brock & A. Xepapadeas, 2015. "Modeling Coupled Climate, Ecosystems, and Economic Systems," Working Papers 2015.66, Fondazione Eni Enrico Mattei.
    3. Heutel, Garth & Moreno-Cruz, Juan & Shayegh, Soheil, 2018. "Solar geoengineering, uncertainty, and the price of carbon," Journal of Environmental Economics and Management, Elsevier, vol. 87(C), pages 24-41.
    4. Manoussi, Vassiliki & Xepapadeas, Anastasios, 2014. "Cooperation and Competition in Climate Change Policies: Mitigation and Climate Engineering when Countries are Asymmetric," Climate Change and Sustainable Development 190930, Fondazione Eni Enrico Mattei (FEEM).
    5. William Brock & Anastasios Xepapadeas, 2020. "Spatial Environmental and Resource Economics," DEOS Working Papers 2002, Athens University of Economics and Business.
    6. Heutel, Garth & Moreno-Cruz, Juan & Shayegh, Soheil, 2016. "Climate tipping points and solar geoengineering," Journal of Economic Behavior & Organization, Elsevier, vol. 132(PB), pages 19-45.
    7. Ahlvik, Lassi & Iho, Antti, 2018. "Optimal geoengineering experiments," Journal of Environmental Economics and Management, Elsevier, vol. 92(C), pages 148-168.
    8. Garth Heutel & Juan Moreno-Cruz & Katharine Ricke, 2016. "Climate Engineering Economics," Annual Review of Resource Economics, Annual Reviews, vol. 8(1), pages 99-118, October.
    9. Dovern, Jonas & Harnisch, Sebastian & Klepper, Gernot & Platt, Ulrich & Oschlies, Andreas & Rickels, Wilfried, 2015. "Radiation Management: Gezielte Beeinflussung des globalen Strahlungshaushalts zur Kontrolle des anthropogenen Klimawandels," Kiel Discussion Papers 549/550, Kiel Institute for the World Economy (IfW Kiel).
    10. Manoussi, Vassiliki & Xepapadeas, Anastasios & Emmerling, Johannes, 2018. "Climate engineering under deep uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 94(C), pages 207-224.
    11. Anastasios Xepapadeas, 2022. "On the optimal management of environmental stock externalities," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 119(24), pages 2202679119-, June.
    12. Moreno-Cruz, Juan B. & Smulders, Sjak, 2017. "Revisiting the economics of climate change: the role of geoengineering," Research in Economics, Elsevier, vol. 71(2), pages 212-224.
    13. Moreno-Cruz, Juan B., 2015. "Mitigation and the geoengineering threat," Resource and Energy Economics, Elsevier, vol. 41(C), pages 248-263.
    14. Steve Newbold & Charles Griffiths & Christopher C. Moore & Ann Wolverton & Elizabeth Kopits, 2010. "The "Social Cost of Carbon" Made Simple," NCEE Working Paper Series 201007, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Aug 2010.
    15. Matthias Schmidt & Hermann Held & Elmar Kriegler & Alexander Lorenz, 2013. "Climate Policy Under Uncertain and Heterogeneous Climate Damages," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 54(1), pages 79-99, January.
    16. Richard S.J. Tol, 2016. "Distributional Implications of Geoengineering," Working Paper Series 08316, Department of Economics, University of Sussex Business School.
    17. Thomas Bassetti & Nikos Benos & Stelios Karagiannis, 2013. "CO 2 Emissions and Income Dynamics: What Does the Global Evidence Tell Us?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 54(1), pages 101-125, January.
    18. Fouad El Ouardighi & Konstantin Kogan & Giorgio Gnecco & Marcello Sanguineti, 2018. "Commitment-Based Equilibrium Environmental Strategies Under Time-Dependent Absorption Efficiency," Group Decision and Negotiation, Springer, vol. 27(2), pages 235-249, April.
    19. Fankhauser, Samuel & Kverndokk, Snorre, 1996. "The global warming game -- Simulations of a CO2-reduction agreement," Resource and Energy Economics, Elsevier, vol. 18(1), pages 83-102, March.
    20. Kverndokk, Snorre & Rose, Adam, 2008. "Equity and Justice in Global Warming Policy," International Review of Environmental and Resource Economics, now publishers, vol. 2(2), pages 135-176, October.

    More about this item

    Keywords

    Environmental Economics and Policy;

    JEL classification:

    • Q53 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Air Pollution; Water Pollution; Noise; Hazardous Waste; Solid Waste; Recycling
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:feemso:150372. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/feemmit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.