IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v221y2018icp280-298.html
   My bibliography  Save this article

Decomposition of rebound effect: An energy-specific, general equilibrium analysis in the context of China

Author

Listed:
  • Zhou, Meifang
  • Liu, Yu
  • Feng, Shenghao
  • Liu, Yang
  • Lu, Yingying

Abstract

The objective of this study is to trace and quantify the sources of rebound effect for different energy sources in China. This paper decomposes the economy-wide rebound effect into 135 production sector-level rebound effects and five final demand components. The sector-level rebound is further decomposed into output effect and substitution effect. A two-stage decomposition method and a static computable general equilibrium model are developed to achieve this. Five types of energy-specific efficiency improvements are introduced, respectively, in all the production sectors. Results show that improving efficiency of using coal leads to the smallest macro-level rebound. For rebound decomposition, four findings are generalized. First, final consumption shows larger impact on the rebound of secondary energy sources than on primary energy sources. Second, production sectors that are big user of the efficiency-exposed energy source are expected to be key rebound contributor. Third, energy-producing sectors make negative rebound contribution. Results also show that, substitution effect is the predominant mechanism that triggers sector-level rebound. Policy implications are also discussed.

Suggested Citation

  • Zhou, Meifang & Liu, Yu & Feng, Shenghao & Liu, Yang & Lu, Yingying, 2018. "Decomposition of rebound effect: An energy-specific, general equilibrium analysis in the context of China," Applied Energy, Elsevier, vol. 221(C), pages 280-298.
  • Handle: RePEc:eee:appene:v:221:y:2018:i:c:p:280-298
    DOI: 10.1016/j.apenergy.2018.03.074
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918304136
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.03.074?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brookes, Len, 1990. "The greenhouse effect: the fallacies in the energy efficiency solution," Energy Policy, Elsevier, vol. 18(2), pages 199-201, March.
    2. Li, Ke & Zhang, Ning & Liu, Yanchu, 2016. "The energy rebound effects across China’s industrial sectors: An output distance function approach," Applied Energy, Elsevier, vol. 184(C), pages 1165-1175.
    3. Steve Sorrell, 2014. "Energy Substitution, Technical Change and Rebound Effects," Energies, MDPI, vol. 7(5), pages 1-24, April.
    4. Broberg, Thomas & Berg, Charlotte & Samakovlis, Eva, 2015. "The economy-wide rebound effect from improved energy efficiency in Swedish industries–A general equilibrium analysis," Energy Policy, Elsevier, vol. 83(C), pages 26-37.
    5. Karen Turner, 2013. ""Rebound" Effects from Increased Energy Efficiency: A Time to Pause and Reflect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    6. Shao, Shuai & Huang, Tao & Yang, Lili, 2014. "Using latent variable approach to estimate China׳s economy-wide energy rebound effect over 1954–2010," Energy Policy, Elsevier, vol. 72(C), pages 235-248.
    7. Lu, Zhijian & Shao, Shuai, 2016. "Impacts of government subsidies on pricing and performance level choice in Energy Performance Contracting: A two-step optimal decision model," Applied Energy, Elsevier, vol. 184(C), pages 1176-1183.
    8. Turner, Karen, 2009. "Negative rebound and disinvestment effects in response to an improvement in energy efficiency in the UK economy," Energy Economics, Elsevier, vol. 31(5), pages 648-666, September.
    9. Barker, Terry & Ekins, Paul & Foxon, Tim, 2007. "The macro-economic rebound effect and the UK economy," Energy Policy, Elsevier, vol. 35(10), pages 4935-4946, October.
    10. A. Greening, Lorna & Greene, David L. & Difiglio, Carmen, 2000. "Energy efficiency and consumption -- the rebound effect -- a survey," Energy Policy, Elsevier, vol. 28(6-7), pages 389-401, June.
    11. Hanley, Nick & McGregor, Peter G. & Swales, J. Kim & Turner, Karen, 2009. "Do increases in energy efficiency improve environmental quality and sustainability?," Ecological Economics, Elsevier, vol. 68(3), pages 692-709, January.
    12. Lu, Yingying & Liu, Yu & Zhou, Meifang, 2017. "Rebound effect of improved energy efficiency for different energy types: A general equilibrium analysis for China," Energy Economics, Elsevier, vol. 62(C), pages 248-256.
    13. Yang, Zhenbing & Shao, Shuai & Yang, Lili & Liu, Jianghua, 2017. "Differentiated effects of diversified technological sources on energy-saving technological progress: Empirical evidence from China's industrial sectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1379-1388.
    14. Glomsrod, Solveig & Taoyuan, Wei, 2005. "Coal cleaning: a viable strategy for reduced carbon emissions and improved environment in China?," Energy Policy, Elsevier, vol. 33(4), pages 525-542, March.
    15. Kenneth Gillingham & David Rapson & Gernot Wagner, 2016. "The Rebound Effect and Energy Efficiency Policy," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 10(1), pages 68-88.
    16. Li, Jianglong & Lin, Boqiang, 2017. "Rebound effect by incorporating endogenous energy efficiency: A comparison between heavy industry and light industry," Applied Energy, Elsevier, vol. 200(C), pages 347-357.
    17. Saunders, Harry D., 2013. "Historical evidence for energy efficiency rebound in 30 US sectors and a toolkit for rebound analysts," Technological Forecasting and Social Change, Elsevier, vol. 80(7), pages 1317-1330.
    18. Sorrell, Steve, 2009. "Jevons' Paradox revisited: The evidence for backfire from improved energy efficiency," Energy Policy, Elsevier, vol. 37(4), pages 1456-1469, April.
    19. Lecca, Patrizio & Swales, Kim & Turner, Karen, 2011. "An investigation of issues relating to where energy should enter the production function," Economic Modelling, Elsevier, vol. 28(6), pages 2832-2841.
    20. Li, Ke & Lin, Boqiang, 2015. "Heterogeneity in rebound effects: Estimated results and impact of China’s fossil-fuel subsidies," Applied Energy, Elsevier, vol. 149(C), pages 148-160.
    21. Wei, Taoyuan & Liu, Yang, 2017. "Estimation of global rebound effect caused by energy efficiency improvement," Energy Economics, Elsevier, vol. 66(C), pages 27-34.
    22. Harty D. Saunders, 1992. "The Khazzoom-Brookes Postulate and Neoclassical Growth," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 131-148.
    23. Jiang, Xuemei & Guan, Dabo & Zhang, Jin & Zhu, Kunfu & Green, Christopher, 2015. "Firm ownership, China's export related emissions, and the responsibility issue," Energy Economics, Elsevier, vol. 51(C), pages 466-474.
    24. Bye, Brita & Fæhn, Taran & Rosnes, Orvika, 2018. "Residential energy efficiency policies: Costs, emissions and rebound effects," Energy, Elsevier, vol. 143(C), pages 191-201.
    25. Li, Chengyu & Shao, Shuai & Yang, Lili & Yu, Mingliang, 2016. "Comparability of estimating energy rebound effect should be based on uniform mechanism and benchmark: A reply to Du and Lin," Energy Policy, Elsevier, vol. 91(C), pages 60-63.
    26. Liu, Yu & Meng, Bo & Hubacek, Klaus & Xue, Jinjun & Feng, Kuishuang & Gao, Yuning, 2016. "‘Made in China’: A reevaluation of embodied CO2 emissions in Chinese exports using firm heterogeneity information," Applied Energy, Elsevier, vol. 184(C), pages 1106-1113.
    27. Burniaux, Jean-Marc & Truong Truong, 2002. "GTAP-E: An Energy-Environmental Version of the GTAP Model," GTAP Technical Papers 923, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    28. Burniaux, Jean-March & Truong, Truong P., 2002. "Gtap-E: An Energy-Environmental Version Of The Gtap Model," Technical Papers 28705, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    29. Wang, Zhaohua & Han, Bai & Lu, Milin, 2016. "Measurement of energy rebound effect in households: Evidence from residential electricity consumption in Beijing, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 852-861.
    30. Koesler, Simon & Swales, Kim & Turner, Karen, 2016. "International spillover and rebound effects from increased energy efficiency in Germany," Energy Economics, Elsevier, vol. 54(C), pages 444-452.
    31. Allan, Grant & Hanley, Nick & McGregor, Peter & Swales, Kim & Turner, Karen, 2007. "The impact of increased efficiency in the industrial use of energy: A computable general equilibrium analysis for the United Kingdom," Energy Economics, Elsevier, vol. 29(4), pages 779-798, July.
    32. Lin, Boqiang & Du, Kerui, 2015. "Measuring energy rebound effect in the Chinese economy: An economic accounting approach," Energy Economics, Elsevier, vol. 50(C), pages 96-104.
    33. Jeroen Bergh, 2011. "Energy Conservation More Effective With Rebound Policy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 48(1), pages 43-58, January.
    34. J. Daniel Khazzoom, 1980. "Economic Implications of Mandated Efficiency in Standards for Household Appliances," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 21-40.
    35. Orea, Luis & Llorca, Manuel & Filippini, Massimo, 2015. "A new approach to measuring the rebound effect associated to energy efficiency improvements: An application to the US residential energy demand," Energy Economics, Elsevier, vol. 49(C), pages 599-609.
    36. Lin, Boqiang & Zhao, Hongli, 2016. "Technological progress and energy rebound effect in China׳s textile industry: Evidence and policy implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 173-181.
    37. Yu, Xuewei & Moreno-Cruz, Juan & Crittenden, John C., 2015. "Regional energy rebound effect: The impact of economy-wide and sector level energy efficiency improvement in Georgia, USA," Energy Policy, Elsevier, vol. 87(C), pages 250-259.
    38. Font Vivanco, David & McDowall, Will & Freire-González, Jaume & Kemp, René & van der Voet, Ester, 2016. "The foundations of the environmental rebound effect and its contribution towards a general framework," Ecological Economics, Elsevier, vol. 125(C), pages 60-69.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fei, Rilong & Wang, Haolin & Wen, Zihao & Yuan, Zhen & Yuan, Kaihua & Chunga, Joseph, 2021. "Tracking factor substitution and the rebound effect of China’s agricultural energy consumption: A new research perspective from asymmetric response," Energy, Elsevier, vol. 216(C).
    2. Liu, Yunqiang & Ye, Deping & Liu, Sha & Wang, Fang & Zeng, Hui & Tang, Hong, 2024. "Whether the agricultural energy rebound offsets the governance effectiveness of the China's natural resource audit policy?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    3. Liu, Lirong & Huang, Guohe & Baetz, Brian & Zhang, Kaiqiang, 2018. "Environmentally-extended input-output simulation for analyzing production-based and consumption-based industrial greenhouse gas mitigation policies," Applied Energy, Elsevier, vol. 232(C), pages 69-78.
    4. Chen, Jiandong & Gao, Ming & Shahbaz, Muhammad & Cheng, Shulei & Song, Malin, 2021. "An improved decomposition approach toward energy rebound effects in China: Review since 1992," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    5. Yan Lu & Xu Yang & Yixiang Ma & Lean Yu, 2022. "Rebound Effect of China’s Electric Power Demand in the Context of Technological Innovation," Sustainability, MDPI, vol. 14(14), pages 1-18, July.
    6. Rongxin Wu & Boqiang Lin, 2022. "Does Energy Efficiency Realize Energy Conservation in the Iron and Steel Industry? A Perspective of Energy Rebound Effect," IJERPH, MDPI, vol. 19(18), pages 1-20, September.
    7. Lin, Boqiang & Jia, Zhijie, 2019. "Impacts of carbon price level in carbon emission trading market," Applied Energy, Elsevier, vol. 239(C), pages 157-170.
    8. Chen, Peipei & Wu, Yi & Zhong, Honglin & Long, Yin & Meng, Jing, 2022. "Exploring household emission patterns and driving factors in Japan using machine learning methods," Applied Energy, Elsevier, vol. 307(C).
    9. Jia, Zhijie & Lin, Boqiang, 2022. "Is the rebound effect useless? A case study on the technological progress of the power industry," Energy, Elsevier, vol. 248(C).
    10. Zhang, Lirong & Li, Yakun & Jia, Zhijie, 2018. "Impact of carbon allowance allocation on power industry in China’s carbon trading market: Computable general equilibrium based analysis," Applied Energy, Elsevier, vol. 229(C), pages 814-827.
    11. Soroush Safarzadeh & Morteza Rasti-Barzoki & Jörn Altmann & Ilkyeong Moon, 2024. "A game theoretic approach for tradable white certificates regarding energy rebound and government intervention," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(11), pages 29643-29676, November.
    12. Colmenares, Gloria & Löschel, Andreas & Madlener, Reinhard, 2019. "The rebound effect and its representation in energy and climate models," CAWM Discussion Papers 106, University of Münster, Münster Center for Economic Policy (MEP).
    13. Safarzadeh, Soroush & Rasti-Barzoki, Morteza & Hejazi, Seyed Reza, 2020. "A review of optimal energy policy instruments on industrial energy efficiency programs, rebound effects, and government policies," Energy Policy, Elsevier, vol. 139(C).
    14. Lin, Boqiang & Zhu, Runqing, 2022. "How does market-oriented reform influence the rebound effect of China’s mining industry?," Economic Analysis and Policy, Elsevier, vol. 74(C), pages 34-44.
    15. Miao, Zhuang & Chen, Xiaodong, 2022. "Combining parametric and non-parametric approach, variable & source -specific productivity changes and rebound effect of energy & environment," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    16. Han, Hongyun & Zhou, Zinan, 2024. "The rebound effect of energy consumption and its determinants in China's agricultural production," Energy, Elsevier, vol. 290(C).
    17. Safarzadeh, Soroush & Rasti-Barzoki, Morteza, 2019. "A game theoretic approach for pricing policies in a duopolistic supply chain considering energy productivity, industrial rebound effect, and government policies," Energy, Elsevier, vol. 167(C), pages 92-105.
    18. Khoshkalam Khosroshahi, Musa & Sayadi, Mohammad, 2020. "Tracking the sources of rebound effect resulting from the efficiency improvement in petrol, diesel, natural gas and electricity consumption; A CGE analysis for Iran," Energy, Elsevier, vol. 197(C).
    19. Wei Zhen & Quande Qin & Lei Jiang, 2022. "Heterogeneous Domestic Intermediate Input-Related Carbon Emissions in China’s Exports," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 81(3), pages 453-479, March.
    20. Taiebat, Morteza & Stolper, Samuel & Xu, Ming, 2019. "Forecasting the Impact of Connected and Automated Vehicles on Energy Use: A Microeconomic Study of Induced Travel and Energy Rebound," Applied Energy, Elsevier, vol. 247(C), pages 297-308.
    21. Bolat, C. Kaan & Soytas, Ugur & Akinoglu, Bulent & Nazlioglu, Saban, 2023. "Is there a macroeconomic carbon rebound effect in EU ETS?," Energy Economics, Elsevier, vol. 125(C).
    22. Cui, Qi & Liu, Yu & Ali, Tariq & Gao, Ji & Chen, Hao, 2020. "Economic and climate impacts of reducing China's renewable electricity curtailment: A comparison between CGE models with alternative nesting structures of electricity," Energy Economics, Elsevier, vol. 91(C).
    23. Shenghao Feng & Keyu Zhang & Xiujian Peng, 2021. "Elasticity of Substitution Between Electricity and Non-Electric Energy in the Context of Carbon Neutrality in China," Centre of Policy Studies/IMPACT Centre Working Papers g-323, Victoria University, Centre of Policy Studies/IMPACT Centre.
    24. Jarke-Neuert, Johannes & Perino, Grischa, 2020. "Energy efficiency promotion backfires under cap-and-trade," Resource and Energy Economics, Elsevier, vol. 62(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rocha, Felipe Freitas da & Almeida, Edmar Luiz Fagundes de, 2021. "A general equilibrium model of macroeconomic rebound effect: A broader view," Energy Economics, Elsevier, vol. 98(C).
    2. Brockway, Paul E. & Sorrell, Steve & Semieniuk, Gregor & Heun, Matthew Kuperus & Court, Victor, 2021. "Energy efficiency and economy-wide rebound effects: A review of the evidence and its implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    3. Khoshkalam Khosroshahi, Musa & Sayadi, Mohammad, 2020. "Tracking the sources of rebound effect resulting from the efficiency improvement in petrol, diesel, natural gas and electricity consumption; A CGE analysis for Iran," Energy, Elsevier, vol. 197(C).
    4. Jin, Taeyoung & Kim, Jinsoo, 2019. "A new approach for assessing the macroeconomic growth energy rebound effect," Applied Energy, Elsevier, vol. 239(C), pages 192-200.
    5. Stern, David I., 2020. "How large is the economy-wide rebound effect?," Energy Policy, Elsevier, vol. 147(C).
    6. Bruns, Stephan B. & Moneta, Alessio & Stern, David I., 2021. "Estimating the economy-wide rebound effect using empirically identified structural vector autoregressions," Energy Economics, Elsevier, vol. 97(C).
    7. Yan, Zheming & Ouyang, Xiaoling & Du, Kerui, 2019. "Economy-wide estimates of energy rebound effect: Evidence from China's provinces," Energy Economics, Elsevier, vol. 83(C), pages 389-401.
    8. Lu, Yingying & Liu, Yu & Zhou, Meifang, 2017. "Rebound effect of improved energy efficiency for different energy types: A general equilibrium analysis for China," Energy Economics, Elsevier, vol. 62(C), pages 248-256.
    9. Gioele Figus & Patrizio Lecca & Peter McGregor & Karen Turner, 2017. "Energy efficiency as an instrument of regional development policy? Trading-off the benefits of an economic stimulus and energy rebound effects," Working Papers 1702, University of Strathclyde Business School, Department of Economics.
    10. Jafari, Mahboubeh & Stern, David I. & Bruns, Stephan B., 2022. "How large is the economy-wide rebound effect in middle income countries? Evidence from Iran," Ecological Economics, Elsevier, vol. 193(C).
    11. Broberg, Thomas & Berg, Charlotte & Samakovlis, Eva, 2015. "The economy-wide rebound effect from improved energy efficiency in Swedish industries–A general equilibrium analysis," Energy Policy, Elsevier, vol. 83(C), pages 26-37.
    12. Li, Ke & Jiang, Zhujun, 2016. "The impacts of removing energy subsidies on economy-wide rebound effects in China: An input-output analysis," Energy Policy, Elsevier, vol. 98(C), pages 62-72.
    13. Tugba Somuncu & Christopher Hannum, 2018. "The Rebound Effect of Energy Efficiency Policy in the Presence of Energy Theft," Energies, MDPI, vol. 11(12), pages 1-28, December.
    14. Wen, Fenghua & Ye, Zhengke & Yang, Huaidong & Li, Ke, 2018. "Exploring the rebound effect from the perspective of household: An analysis of China's provincial level," Energy Economics, Elsevier, vol. 75(C), pages 345-356.
    15. Sondes Kahouli & Xavier Pautrel, 2020. "Residential and Industrial Energy Efficiency Improvement: A Dynamic General Equilibrium Analysis of the Rebound Effect," Working Papers 2020.28, Fondazione Eni Enrico Mattei.
    16. Chang, Juin-Jen & Wang, Wei-Neng & Shieh, Jhy-Yuan, 2018. "Environmental rebounds/backfires: Macroeconomic implications for the promotion of environmentally-friendly products," Journal of Environmental Economics and Management, Elsevier, vol. 88(C), pages 35-68.
    17. Colmenares, Gloria & Löschel, Andreas & Madlener, Reinhard, 2019. "The rebound effect and its representation in energy and climate models," CAWM Discussion Papers 106, University of Münster, Münster Center for Economic Policy (MEP).
    18. Gioele Figus & Patrizio Lecca & Karen Turner & Peter McGregor, 2016. "Increased energy efficiency in Scottish households: trading-off economic benefits and energy rebound effects?," EcoMod2016 9454, EcoMod.
    19. Font Vivanco, David & Nechifor, Victor & Freire-González, Jaume & Calzadilla, Alvaro, 2021. "Economy-wide rebound makes UK’s electric car subsidy fall short of expectations," Applied Energy, Elsevier, vol. 297(C).
    20. Kahouli, Sondes & Pautrel, Xavier, 2020. "Residential and Industrial Energy Efficiency Improvement: A Dynamic General Equilibrium Analysis of the Rebound Effect," FEP: Future Energy Program 308024, Fondazione Eni Enrico Mattei (FEEM) > FEP: Future Energy Program.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:221:y:2018:i:c:p:280-298. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.