IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v27y2022i8d10.1007_s11027-022-10030-9.html
   My bibliography  Save this article

Determining our climate policy future: expert opinions about negative emissions and solar radiation management pathways

Author

Listed:
  • Benjamin K. Sovacool

    (Aarhus University
    University of Sussex
    Boston University)

  • Chad M. Baum

    (Aarhus University)

  • Sean Low

    (Aarhus University)

Abstract

Negative emissions technologies and solar radiation management techniques could contribute towards climate stability, either by removing carbon dioxide from the atmosphere and storing it permanently or reflecting sunlight away from the atmosphere. Despite concerns about them, such options are increasingly being discussed as crucial complements to traditional climate change mitigation and adaptation. Expectations around negative emissions and solar radiation management and their associated risks and costs shape public and private discussions of how society deals with the climate crisis. In this study, we rely on a large expert survey (N = 74) to critically examine the future potential of both negative emission options (e.g., carbon dioxide removal) and solar radiation management techniques. We designed a survey process that asked a pool of prominent experts questions about (i) the necessity of adopting negative emissions or solar radiation management options, (ii) the desirability of such options when ranked against each other, (iii) estimations of future efficacy in terms of temperature reductions achieved or gigatons of carbon removed, (iv) expectations about future scaling, commercialization, and deployment targets, and (v) potential risks and barriers. Unlike other elicitation processes where experts are more positive or have high expectations about novel options, our results are more critical and cautionary. We find that some options (notably afforestation and reforestation, ecosystem restoration, and soil carbon sequestration) are envisioned frequently as necessary, desirable, feasible, and affordable, with minimal risks and barriers (compared to other options). This contrasts with other options envisaged as unnecessary risky or costly, notably ocean alkalization or fertilization, space-based reflectors, high-altitude sunshades, and albedo management via clouds. Moreover, only the options of afforestation and reforestation and soil carbon sequestration are expected to be widely deployed before 2035, which raise very real concerns about climate and energy policy in the near- to mid-term.

Suggested Citation

  • Benjamin K. Sovacool & Chad M. Baum & Sean Low, 2022. "Determining our climate policy future: expert opinions about negative emissions and solar radiation management pathways," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(8), pages 1-50, December.
  • Handle: RePEc:spr:masfgc:v:27:y:2022:i:8:d:10.1007_s11027-022-10030-9
    DOI: 10.1007/s11027-022-10030-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11027-022-10030-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11027-022-10030-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brian C. O’Neill & Timothy R. Carter & Kristie Ebi & Paula A. Harrison & Eric Kemp-Benedict & Kasper Kok & Elmar Kriegler & Benjamin L. Preston & Keywan Riahi & Jana Sillmann & Bas J. Ruijven & Detlef, 2020. "Achievements and needs for the climate change scenario framework," Nature Climate Change, Nature, vol. 10(12), pages 1074-1084, December.
    2. Lyla L. Taylor & Joe Quirk & Rachel M. S. Thorley & Pushker A. Kharecha & James Hansen & Andy Ridgwell & Mark R. Lomas & Steve A. Banwart & David J. Beerling, 2016. "Enhanced weathering strategies for stabilizing climate and averting ocean acidification," Nature Climate Change, Nature, vol. 6(4), pages 402-406, April.
    3. David M. Reiner, 2016. "Learning through a portfolio of carbon capture and storage demonstration projects," Nature Energy, Nature, vol. 1(1), pages 1-7, January.
    4. Pietzcker, Robert C. & Ueckerdt, Falko & Carrara, Samuel & de Boer, Harmen Sytze & Després, Jacques & Fujimori, Shinichiro & Johnson, Nils & Kitous, Alban & Scholz, Yvonne & Sullivan, Patrick & Ludere, 2017. "System integration of wind and solar power in integrated assessment models: A cross-model evaluation of new approaches," Energy Economics, Elsevier, vol. 64(C), pages 583-599.
    5. Laura Diaz Anadon & Erin Baker & Valentina Bosetti & Lara Aleluia Reis, 2016. "Expert views - and disagreements - about the potential of energy technology R&D," Climatic Change, Springer, vol. 136(3), pages 677-691, June.
    6. Klaus, Geraldine & Ernst, Andreas & Oswald, Lisa, 2020. "Psychological factors influencing laypersons’ acceptance of climate engineering, climate change mitigation and business as usual scenarios," Technology in Society, Elsevier, vol. 60(C).
    7. Carola Braun & Christine Merk & Gert Pönitzsch & Katrin Rehdanz & Ulrich Schmidt, 2018. "Public perception of climate engineering and carbon capture and storage in Germany: survey evidence," Climate Policy, Taylor & Francis Journals, vol. 18(4), pages 471-484, April.
    8. Rob Bellamy, 2018. "Incentivize negative emissions responsibly," Nature Energy, Nature, vol. 3(7), pages 532-534, July.
    9. Ryan Hanna & Ahmed Abdulla & Yangyang Xu & David G. Victor, 2021. "Emergency deployment of direct air capture as a response to the climate crisis," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    10. Daniel L. Sanchez & James H. Nelson & Josiah Johnston & Ana Mileva & Daniel M. Kammen, 2015. "Biomass enables the transition to a carbon-negative power system across western North America," Nature Climate Change, Nature, vol. 5(3), pages 230-234, March.
    11. Vincenzina Caputo & Jayson L. Lusk, 2020. "What agricultural and food policies do U.S. consumers prefer? A best–worst scaling approach," Agricultural Economics, International Association of Agricultural Economists, vol. 51(1), pages 75-93, January.
    12. Keeney,Ralph L. & Raiffa,Howard, 1993. "Decisions with Multiple Objectives," Cambridge Books, Cambridge University Press, number 9780521438834, October.
    13. Duncan McLaren, 2020. "Quantifying the potential scale of mitigation deterrence from greenhouse gas removal techniques," Climatic Change, Springer, vol. 162(4), pages 2411-2428, October.
    14. Holly Jean Buck, 2016. "Rapid scale-up of negative emissions technologies: social barriers and social implications," Climatic Change, Springer, vol. 139(2), pages 155-167, November.
    15. Shannan K. Sweet & Jonathon P. Schuldt & Johannes Lehmann & Deborah A. Bossio & Dominic Woolf, 2021. "Perceptions of naturalness predict US public support for Soil Carbon Storage as a climate solution," Climatic Change, Springer, vol. 166(1), pages 1-15, May.
    16. Andy Stirling, 2010. "Keep it complex," Nature, Nature, vol. 468(7327), pages 1029-1031, December.
    17. Daniel P. Carlisle & Pamela M. Feetham & Malcolm J. Wright & Damon A. H. Teagle, 2020. "The public remain uninformed and wary of climate engineering," Climatic Change, Springer, vol. 160(2), pages 303-322, May.
    18. Garth Heutel & Juan Moreno-Cruz & Katharine Ricke, 2016. "Climate Engineering Economics," Annual Review of Resource Economics, Annual Reviews, vol. 8(1), pages 99-118, October.
    19. Michael Obersteiner & Johannes Bednar & Fabian Wagner & Thomas Gasser & Philippe Ciais & Nicklas Forsell & Stefan Frank & Petr Havlik & Hugo Valin & Ivan A. Janssens & Josep Peñuelas & Guido Schmidt-T, 2018. "How to spend a dwindling greenhouse gas budget," Nature Climate Change, Nature, vol. 8(1), pages 7-10, January.
      • Michael Obersteiner & Johannes Bednar & Fabian Wagner & Thomas Gasser & Philippe Ciais & Nicklas Forsell & Stefan Frank & Petr Havlík & Hugo Valin & Ivan Janssens & Josep Penuelas & Guido Schmidt-Trau, 2018. "How to spend a dwindling greenhouse gas budget," Post-Print hal-02895061, HAL.
    20. T. Gasser & C. Guivarch & K. Tachiiri & C. D. Jones & P. Ciais, 2015. "Negative emissions physically needed to keep global warming below 2 °C," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
    21. Michael Dutschke & Bernhard Schlamadinger & Jenny L.P. Wong & Michael Rumberg, 2005. "Value and risks of expiring carbon credits from afforestation and reforestation projects under the CDM," Climate Policy, Taylor & Francis Journals, vol. 5(1), pages 109-125, January.
    22. Verdolini, Elena & Anadon, Laura Diaz & Lu, Jiaqi & Nemet, Gregory F., 2015. "The effects of expert selection, elicitation design, and R&D assumptions on experts' estimates of the future costs of photovoltaics," Energy Policy, Elsevier, vol. 80(C), pages 233-243.
    23. Marilou Jobin & Michael Siegrist, 2020. "Support for the Deployment of Climate Engineering: A Comparison of Ten Different Technologies," Risk Analysis, John Wiley & Sons, vol. 40(5), pages 1058-1078, May.
    24. Victoria Campbell-Arvai & P. Sol Hart & Kaitlin T. Raimi & Kimberly S. Wolske, 2017. "The influence of learning about carbon dioxide removal (CDR) on support for mitigation policies," Climatic Change, Springer, vol. 143(3), pages 321-336, August.
    25. Rickels, Wilfried & Proelß, Alexander & Geden, Oliver & Burhenne, Julian & Fridahl, Mathias, 2020. "The future of (negative) emissions trading in the European Union," Kiel Working Papers 2164, Kiel Institute for the World Economy (IfW Kiel).
    26. Kimberly S. Wolske & Kaitlin T. Raimi & Victoria Campbell-Arvai & P. Sol Hart, 2019. "Public support for carbon dioxide removal strategies: the role of tampering with nature perceptions," Climatic Change, Springer, vol. 152(3), pages 345-361, March.
    27. Elspeth Spence & Emily Cox & Nick Pidgeon, 2021. "Exploring cross-national public support for the use of enhanced weathering as a land-based carbon dioxide removal strategy," Climatic Change, Springer, vol. 165(1), pages 1-18, March.
    28. R. A. Houghton & Brett Byers & Alexander A. Nassikas, 2015. "A role for tropical forests in stabilizing atmospheric CO2," Nature Climate Change, Nature, vol. 5(12), pages 1022-1023, December.
    29. Detlef P. van Vuuren & Andries F. Hof & Mariësse A. E. van Sluisveld & Keywan Riahi, 2017. "Open discussion of negative emissions is urgently needed," Nature Energy, Nature, vol. 2(12), pages 902-904, December.
    30. Zhen Dai & Elizabeth T. Burns & Peter J. Irvine & Dustin H. Tingley & Jianhua Xu & David W. Keith, 2021. "Elicitation of US and Chinese expert judgments show consistent views on solar geoengineering," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-9, December.
    31. Ariane Wenger & Michael Stauffacher & Irina Dallo, 2021. "Public perception and acceptance of negative emission technologies – framing effects in Switzerland," Climatic Change, Springer, vol. 167(3), pages 1-20, August.
    32. Kevin Anderson & Jessica Jewell, 2019. "Debating the bedrock of climate-change mitigation scenarios," Nature, Nature, vol. 573(7774), pages 348-349, September.
    33. Malcolm J. Wright & Damon A. H. Teagle & Pamela M. Feetham, 2014. "A quantitative evaluation of the public response to climate engineering," Nature Climate Change, Nature, vol. 4(2), pages 106-110, February.
    34. Ryan Wiser & Joseph Rand & Joachim Seel & Philipp Beiter & Erin Baker & Eric Lantz & Patrick Gilman, 2021. "Expert elicitation survey predicts 37% to 49% declines in wind energy costs by 2050," Nature Energy, Nature, vol. 6(5), pages 555-565, May.
    35. Usher, Will & Strachan, Neil, 2013. "An expert elicitation of climate, energy and economic uncertainties," Energy Policy, Elsevier, vol. 61(C), pages 811-821.
    36. EdwardA. Parson & HollyJ. Buck, 2020. "Large-Scale Carbon Dioxide Removal: The Problem ofPhasedown," Global Environmental Politics, MIT Press, vol. 20(3), pages 70-92, August.
    37. Emily Cox & Elspeth Spence & Nick Pidgeon, 2020. "Public perceptions of carbon dioxide removal in the United States and the United Kingdom," Nature Climate Change, Nature, vol. 10(8), pages 744-749, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chad M. Baum & Livia Fritz & Sean Low & Benjamin K. Sovacool, 2024. "Public perceptions and support of climate intervention technologies across the Global North and Global South," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Sean Low & Livia Fritz & Chad M. Baum & Benjamin K. Sovacool, 2024. "Public perceptions on carbon removal from focus groups in 22 countries," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Elspeth Spence & Emily Cox & Nick Pidgeon, 2021. "Exploring cross-national public support for the use of enhanced weathering as a land-based carbon dioxide removal strategy," Climatic Change, Springer, vol. 165(1), pages 1-18, March.
    4. Ariane Wenger & Michael Stauffacher & Irina Dallo, 2021. "Public perception and acceptance of negative emission technologies – framing effects in Switzerland," Climatic Change, Springer, vol. 167(3), pages 1-20, August.
    5. Merk, Christine & Liebe, Ulf & Meyerhoff, Jürgen & Rehdanz, Katrin, 2023. "German citizens’ preference for domestic carbon dioxide removal by afforestation is incompatible with national removal potential," Open Access Publications from Kiel Institute for the World Economy 270884, Kiel Institute for the World Economy (IfW Kiel).
    6. Shannan K. Sweet & Jonathon P. Schuldt & Johannes Lehmann & Deborah A. Bossio & Dominic Woolf, 2021. "Perceptions of naturalness predict US public support for Soil Carbon Storage as a climate solution," Climatic Change, Springer, vol. 166(1), pages 1-15, May.
    7. Beckage, Brian & Lacasse, Katherine & Raimi, Kaitlin T. & Visioni, Daniele, 2023. "Integrating Risk Perception with Climate Models to Understand the Potential Deployment of Solar Radiation Modification to Mitigate Climate Change," RFF Working Paper Series 23-22, Resources for the Future.
    8. Terre Satterfield & Sara Nawaz & Guillaume Peterson St-Laurent, 2023. "Exploring public acceptability of direct air carbon capture with storage: climate urgency, moral hazards and perceptions of the ‘whole versus the parts’," Climatic Change, Springer, vol. 176(2), pages 1-21, February.
    9. Kimberly S. Wolske & Kaitlin T. Raimi & Victoria Campbell-Arvai & P. Sol Hart, 2019. "Public support for carbon dioxide removal strategies: the role of tampering with nature perceptions," Climatic Change, Springer, vol. 152(3), pages 345-361, March.
    10. Ángel Galán-Martín & Daniel Vázquez & Selene Cobo & Niall Dowell & José Antonio Caballero & Gonzalo Guillén-Gosálbez, 2021. "Delaying carbon dioxide removal in the European Union puts climate targets at risk," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    11. Marilou Jobin & Michael Siegrist, 2020. "Support for the Deployment of Climate Engineering: A Comparison of Ten Different Technologies," Risk Analysis, John Wiley & Sons, vol. 40(5), pages 1058-1078, May.
    12. Jérôme Hilaire & Jan C. Minx & Max W. Callaghan & Jae Edmonds & Gunnar Luderer & Gregory F. Nemet & Joeri Rogelj & Maria Mar Zamora, 2019. "Negative emissions and international climate goals—learning from and about mitigation scenarios," Climatic Change, Springer, vol. 157(2), pages 189-219, November.
    13. Burke, Joshua & Gambhir, Ajay, 2022. "Policy incentives for greenhouse gas removal techniques: the risks of premature inclusion in carbon markets and the need for a multi-pronged policy framework," LSE Research Online Documents on Economics 115010, London School of Economics and Political Science, LSE Library.
    14. M.J. Mace & Claire L. Fyson & Michiel Schaeffer & William L. Hare, 2021. "Large‐Scale Carbon Dioxide Removal to Meet the 1.5°C Limit: Key Governance Gaps, Challenges and Priority Responses," Global Policy, London School of Economics and Political Science, vol. 12(S1), pages 67-81, April.
    15. Wim Carton & Adeniyi Asiyanbi & Silke Beck & Holly J. Buck & Jens F. Lund, 2020. "Negative emissions and the long history of carbon removal," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(6), November.
    16. Sovacool, Benjamin K. & Baum, Chad M. & Low, Sean, 2023. "Beyond climate stabilization: Exploring the perceived sociotechnical co-impacts of carbon removal and solar geoengineering," Ecological Economics, Elsevier, vol. 204(PA).
    17. Toby Bolsen & Risa Palm & Russell E. Luke, 2023. "Public response to solar geoengineering: how media frames about stratospheric aerosol injection affect opinions," Climatic Change, Springer, vol. 176(8), pages 1-21, August.
    18. Laura Diaz Anadon & Erin Baker & Valentina Bosetti & Lara Aleluia Reis, 2016. "Expert views - and disagreements - about the potential of energy technology R&D," Climatic Change, Springer, vol. 136(3), pages 677-691, June.
    19. Emily Ho & David V. Budescu & Valentina Bosetti & Detlef P. Vuuren & Klaus Keller, 2019. "Not all carbon dioxide emission scenarios are equally likely: a subjective expert assessment," Climatic Change, Springer, vol. 155(4), pages 545-561, August.
    20. Gea Hoogendoorn & Bernadette Sütterlin & Michael Siegrist, 2021. "Tampering with Nature: A Systematic Review," Risk Analysis, John Wiley & Sons, vol. 41(1), pages 141-156, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:27:y:2022:i:8:d:10.1007_s11027-022-10030-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.