IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v153y2019i3d10.1007_s10584-019-02389-7.html
   My bibliography  Save this article

Climate engineering–induced changes in correlations between Earth system variables—implications for appropriate indicator selection

Author

Listed:
  • Nadine Mengis

    (Concordia University
    Simon Fraser University)

  • David P. Keller

    (GEOMAR Helmholtz Centre for Ocean Research Kiel)

  • Wilfried Rickels

    (Kiel Institute for the World Economy)

  • Martin Quaas

    (Kiel Institute for the World Economy)

  • Andreas Oschlies

    (GEOMAR Helmholtz Centre for Ocean Research Kiel)

Abstract

Climate engineering (CE) deployment would alter prevailing relationships between Earth system variables, making indicators and metrics used so far in the climate change assessment context less appropriate to assess CE measures. Achieving a comprehensive CE assessment requires a systematic and transparent reevaluation of the indicator selection process from Earth system variables. Here, we provide a first step towards such a systematic assessment of changes in correlations between Earth system variables following simulated deployment of different CE methods. We therefore analyze changes in the correlation structure of a broad set of Earth system variables for two conventional climate change scenarios without CE and with three idealized CE model experiments: (i) solar radiation management, (ii) large-scale afforestation, and (iii) ocean alkalinity enhancement. First, we investigate how the three CE scenarios alter prevailing correlations between Earth system variables when compared to an intermediate-high and a business-as-usual future climate change scenario. Second, we contrast the indicators identified for the non-CE climate change scenarios and the indicators identified when all five scenarios are considered. Finally, we use the identified indicator sets for an evaluation of the five climate change scenarios. We find that the additional indicators provide valuable information for the assessment of the CE measures, and their application hence allows for a more comprehensive and a comparative assessment of the mitigation and CE deployment scenarios.

Suggested Citation

  • Nadine Mengis & David P. Keller & Wilfried Rickels & Martin Quaas & Andreas Oschlies, 2019. "Climate engineering–induced changes in correlations between Earth system variables—implications for appropriate indicator selection," Climatic Change, Springer, vol. 153(3), pages 305-322, April.
  • Handle: RePEc:spr:climat:v:153:y:2019:i:3:d:10.1007_s10584-019-02389-7
    DOI: 10.1007/s10584-019-02389-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-019-02389-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-019-02389-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bohringer, Christoph & Jochem, Patrick E.P., 2007. "Measuring the immeasurable -- A survey of sustainability indices," Ecological Economics, Elsevier, vol. 63(1), pages 1-8, June.
    2. Thomas Sterner & U. Martin Persson, 2008. "An Even Sterner Review: Introducing Relative Prices into the Discounting Debate," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 2(1), pages 61-76, Winter.
    3. P. J. Irvine & R. L. Sriver & K. Keller, 2012. "Tension between reducing sea-level rise and global warming through solar-radiation management," Nature Climate Change, Nature, vol. 2(2), pages 97-100, February.
    4. Ebert, Udo & Welsch, Heinz, 2004. "Meaningful environmental indices: a social choice approach," Journal of Environmental Economics and Management, Elsevier, vol. 47(2), pages 270-283, March.
    5. Marshall Burke & Solomon M. Hsiang & Edward Miguel, 2015. "Global non-linear effect of temperature on economic production," Nature, Nature, vol. 527(7577), pages 235-239, November.
    6. Malte Meinshausen & S. Smith & K. Calvin & J. Daniel & M. Kainuma & J-F. Lamarque & K. Matsumoto & S. Montzka & S. Raper & K. Riahi & A. Thomson & G. Velders & D.P. Vuuren, 2011. "The RCP greenhouse gas concentrations and their extensions from 1765 to 2300," Climatic Change, Springer, vol. 109(1), pages 213-241, November.
    7. Gernot Klepper & Wilfried Rickels, 2014. "Climate Engineering: Economic Considerations and Research Challenges," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 8(2), pages 270-289.
    8. David P. Keller & Ellias Y. Feng & Andreas Oschlies, 2014. "Potential climate engineering effectiveness and side effects during a high carbon dioxide-emission scenario," Nature Communications, Nature, vol. 5(1), pages 1-11, May.
    9. Juan Moreno-Cruz & Katharine Ricke & David Keith, 2012. "A simple model to account for regional inequalities in the effectiveness of solar radiation management," Climatic Change, Springer, vol. 110(3), pages 649-668, February.
    10. Oschlies, Andreas & Held, Hermann & Keller, David & Keller, Klaus & Mengis, Nadine & Quaas, Martin & Rickels, Wilfried & Schmidt, Hauke, 2017. "Indicators and Metrics for the Assessment of Climate Engineering," Open Access Publications from Kiel Institute for the World Economy 226354, Kiel Institute for the World Economy (IfW Kiel).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Judith Kreuter & Nils Matzner & Christian Baatz & David P. Keller & Till Markus & Felix Wittstock & Ulrike Bernitt & Nadine Mengis, 2020. "Unveiling assumptions through interdisciplinary scrutiny: Observations from the German Priority Program on Climate Engineering (SPP 1689)," Climatic Change, Springer, vol. 162(1), pages 57-66, September.
    2. Wu, Tao & Gao, Xiangyun & An, Feng & Xu, Xin & Kurths, Jürgen, 2024. "Forecasting the dynamics of correlations in complex systems," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rickels, Wilfried & Weigand, Christian & Grasse, Patricia & Schmidt, Jörn Oliver & Voss, Rüdiger, 2018. "Does the European Union achieve comprehensive blue growth? Progress of EU coastal states in the Baltic and North Sea, and the Atlantic Ocean against sustainable development Goal 14," Kiel Working Papers 2112, Kiel Institute for the World Economy (IfW Kiel).
    2. Heyen, Daniel & Horton, Joshua & Moreno-Cruz, Juan, 2019. "Strategic implications of counter-geoengineering: Clash or cooperation?," Journal of Environmental Economics and Management, Elsevier, vol. 95(C), pages 153-177.
    3. Emmerling, Johannes & Tavoni, Massimo, 2017. "Quantifying Non-cooperative Climate Engineering," MITP: Mitigation, Innovation and Transformation Pathways 266289, Fondazione Eni Enrico Mattei (FEEM).
    4. Johannes Emmerling & Massimo Tavoni, 2018. "Climate Engineering and Abatement: A ‘flat’ Relationship Under Uncertainty," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 69(2), pages 395-415, February.
    5. Gregory Casey & Stephie Fried & Ethan Goode, 2023. "Projecting the Impact of Rising Temperatures: The Role of Macroeconomic Dynamics," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 71(3), pages 688-718, September.
    6. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    7. Kornek, Ulrike & Klenert, David & Edenhofer, Ottmar & Fleurbaey, Marc, 2021. "The social cost of carbon and inequality: When local redistribution shapes global carbon prices," Journal of Environmental Economics and Management, Elsevier, vol. 107(C).
    8. Zhou, P. & Wang, M., 2016. "Carbon dioxide emissions allocation: A review," Ecological Economics, Elsevier, vol. 125(C), pages 47-59.
    9. Bovari, Emmanuel & Giraud, Gaël & Mc Isaac, Florent, 2018. "Coping With Collapse: A Stock-Flow Consistent Monetary Macrodynamics of Global Warming," Ecological Economics, Elsevier, vol. 147(C), pages 383-398.
    10. Rubén Raedo, 2021. "Urban Sustainability Deficits: The Urban Non-Sustainability Index (UNSI) as a Tool for Urban Policy," Sustainability, MDPI, vol. 13(22), pages 1-25, November.
    11. Athanassoglou, Stergios, 2015. "Revisiting Worst-case DEA for Composite Indicators," Climate Change and Sustainable Development 198712, Fondazione Eni Enrico Mattei (FEEM).
    12. Tol, Richard S.J., 2024. "A meta-analysis of the total economic impact of climate change," Energy Policy, Elsevier, vol. 185(C).
    13. Zhou, P. & Delmas, M.A. & Kohli, A., 2017. "Constructing meaningful environmental indices: A nonparametric frontier approach," Journal of Environmental Economics and Management, Elsevier, vol. 85(C), pages 21-34.
    14. Klaus, Geraldine & Ernst, Andreas & Oswald, Lisa, 2020. "Psychological factors influencing laypersons’ acceptance of climate engineering, climate change mitigation and business as usual scenarios," Technology in Society, Elsevier, vol. 60(C).
    15. Gómez-Limón, José A. & Sanchez-Fernandez, Gabriela, 2010. "Empirical evaluation of agricultural sustainability using composite indicators," Ecological Economics, Elsevier, vol. 69(5), pages 1062-1075, March.
    16. Heutel, Garth & Moreno-Cruz, Juan & Shayegh, Soheil, 2018. "Solar geoengineering, uncertainty, and the price of carbon," Journal of Environmental Economics and Management, Elsevier, vol. 87(C), pages 24-41.
    17. Milica Maricic & Marija Jankovic & Veljko Jeremic, 2014. "Towards a Framework for Evaluating Sustainable Society Index," Romanian Statistical Review, Romanian Statistical Review, vol. 62(3), pages 49-62, September.
    18. Gaël Giraud & Florent MCISAAC & Emmanuel BOVARI & Ekaterina ZATSEPINA, 2017. "Coping with the Collapse: A Stock-Flow Consistent Monetary Macrodynamics of Global Warming. Updated version: January 2017," Working Paper b6f3f098-ed24-44bf-9cdd-1, Agence française de développement.
    19. Andersen, Torben M. & Bhattacharya, Joydeep & Liu, Pan, 2020. "Resolving intergenerational conflict over the environment under the Pareto criterion," Journal of Environmental Economics and Management, Elsevier, vol. 100(C).
    20. Garth Heutel & Juan Moreno-Cruz & Katharine Ricke, 2016. "Climate Engineering Economics," Annual Review of Resource Economics, Annual Reviews, vol. 8(1), pages 99-118, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:153:y:2019:i:3:d:10.1007_s10584-019-02389-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.