IDEAS home Printed from https://ideas.repec.org/e/c/pwa24.html
   My authors  Follow this author

Alan T.K. Wan

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. Yan-Leung Cheung & Yin-Wong Cheung & Alan T.K. Wan, 2008. "A High-Low Model of Daily Stock Price Ranges," CESifo Working Paper Series 2387, CESifo.

    Cited by:

    1. Henning Fischer & Ángela Blanco‐FERNÁndez & Peter Winker, 2016. "Predicting Stock Return Volatility: Can We Benefit from Regression Models for Return Intervals?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(2), pages 113-146, March.
    2. Alia Afzal & Philipp Sibbertsen, 2021. "Modeling fractional cointegration between high and low stock prices in Asian countries," Empirical Economics, Springer, vol. 60(2), pages 661-682, February.
    3. Hu, Zhongyi & Bao, Yukun & Chiong, Raymond & Xiong, Tao, 2015. "Mid-term interval load forecasting using multi-output support vector regression with a memetic algorithm for feature selection," Energy, Elsevier, vol. 84(C), pages 419-431.
    4. Tao Xiong & Yukun Bao & Zhongyi Hu, 2014. "Multiple-output support vector regression with a firefly algorithm for interval-valued stock price index forecasting," Papers 1401.1916, arXiv.org.
    5. González-Rivera, Gloria & Luo, Yun, 2019. "Prediction regions for interval-valued time series," DES - Working Papers. Statistics and Econometrics. WS 29054, Universidad Carlos III de Madrid. Departamento de Estadística.
    6. Wei Yang & Ai Han & Yongmiao Hong & Shouyang Wang, 2016. "Analysis of crisis impact on crude oil prices: a new approach with interval time series modelling," Quantitative Finance, Taylor & Francis Journals, vol. 16(12), pages 1917-1928, December.
    7. Caporale, Guglielmo Maria & Gil-Alana, Luis A. & Poza, Carlos, 2020. "High and low prices and the range in the European stock markets: A long-memory approach," Research in International Business and Finance, Elsevier, vol. 52(C).
    8. Caporin, Massimiliano & Ranaldo, Angelo & Santucci de Magistris, Paolo, 2012. "On the Predictability of Stock Prices: a Case for High and Low Prices," Working Papers on Finance 1213, University of St. Gallen, School of Finance.
    9. Gloria Gonzalez-Rivera & Javier Arroyo & Carlos Mate, 2011. "Forecasting with Interval and Histogram Data. Some Financial Applications," Working Papers 201438, University of California at Riverside, Department of Economics.
    10. Yaya, OlaOluwa S & Gil-Alana, Luis A., 2018. "High and Low Intraday Commodity Prices: A Fractional Integration and Cointegration Approach," MPRA Paper 90518, University Library of Munich, Germany.
    11. OlaOluwa S. Yaya & Xuan Vinh Vo & Ahamuefula E. Ogbonna & Adeolu O. Adewuyi, 2022. "Modelling cryptocurrency high–low prices using fractional cointegrating VAR," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 489-505, January.
    12. Leandro Maciel, 2020. "Technical analysis based on high and low stock prices forecasts: evidence for Brazil using a fractionally cointegrated VAR model," Empirical Economics, Springer, vol. 58(4), pages 1513-1540, April.
    13. Liu, Zhichao & Ma, Feng & Long, Yujia, 2015. "High and low or close to close prices? Evidence from the multifractal volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 50-61.
    14. He, Angela W.W. & Kwok, Jerry T.K. & Wan, Alan T.K., 2010. "An empirical model of daily highs and lows of West Texas Intermediate crude oil prices," Energy Economics, Elsevier, vol. 32(6), pages 1499-1506, November.
    15. González-Rivera, Gloria & Rodríguez Caballero, Carlos Vladimir, 2023. "Modelling intervals of minimum/maximum temperatures in the Iberian Peninsula," DES - Working Papers. Statistics and Econometrics. WS 37968, Universidad Carlos III de Madrid. Departamento de Estadística.
    16. Chen-Yin Kuo, 2018. "Are the forecast errors of stock prices related to the degree of accounting conservatism?," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 8(6), pages 1-9.

  2. Wan, A., 1993. "Risk Comparison of the Inequality Constrained Least Squares and Other Related Estimators Under Balanced Loss," Papers 93-17, New South Wales - School of Economics.

    Cited by:

    1. Chaturvedi, Anoop & Shalabh, 2004. "Risk and Pitman closeness properties of feasible generalized double k-class estimators in linear regression models with non-spherical disturbances under balanced loss function," Journal of Multivariate Analysis, Elsevier, vol. 90(2), pages 229-256, August.
    2. Buatikan Mirezi & Selahattin Kaçıranlar, 2023. "Admissible linear estimators in the general Gauss–Markov model under generalized extended balanced loss function," Statistical Papers, Springer, vol. 64(1), pages 73-92, February.
    3. Ohtani, Kazuhiro, 1998. "Inadmissibility of the Stein-rule estimator under the balanced loss function," Journal of Econometrics, Elsevier, vol. 88(1), pages 193-201, November.
    4. Shalabh, 2001. "Least squares estimators in measurement error models under the balanced loss function," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 10(2), pages 301-308, December.
    5. Zhu, Rong & Zhou, Sherry Z.F., 2011. "Estimating the error variance after a pre-test for an interval restriction on the coefficients," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2312-2323, July.

Articles

  1. Magnus, Jan R. & Wan, Alan T.K. & Zhang, Xinyu, 2011. "Weighted average least squares estimation with nonspherical disturbances and an application to the Hong Kong housing market," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1331-1341, March.

    Cited by:

    1. Magnus, J.R. & Wang, W. & Zhang, Xinyu, 2012. "WALS Prediction," Discussion Paper 2012-043, Tilburg University, Center for Economic Research.
    2. Qingfeng Liu & Ryo Okui & Arihiro Yoshimura, 2016. "Generalized Least Squares Model Averaging," Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1692-1752, December.
    3. Zhang, Xiaomeng & Zhang, Xinyu, 2023. "Optimal model averaging based on forward-validation," Journal of Econometrics, Elsevier, vol. 237(2).
    4. Schomaker, Michael & Heumann, Christian, 2014. "Model selection and model averaging after multiple imputation," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 758-770.
    5. Poghosyan, K., 2012. "Structural and reduced-form modeling and forecasting with application to Armenia," Other publications TiSEM ad1a24c3-15e6-4f04-b338-3, Tilburg University, School of Economics and Management.
    6. Alan T. K. Wan & Shangyu Xie & Yong Zhou, 2017. "A varying coefficient approach to estimating hedonic housing price functions and their quantiles," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(11), pages 1979-1999, August.
    7. Aman Ullah & Alan T.K. Wan & Huansha Wang & Xinyu Zhang & Guohua Zou, 2014. "A Semiparametric Generalized Ridge Estimator and Link with Model Averaging," Working Papers 201412, University of California at Riverside, Department of Economics.
    8. Jan R. Magnus & Wendun Wang & Xinyu Zhang, 2016. "Weighted-Average Least Squares Prediction," Econometric Reviews, Taylor & Francis Journals, vol. 35(6), pages 1040-1074, June.
    9. Mark F. J. Steel, 2020. "Model Averaging and Its Use in Economics," Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
    10. Poghosyan, K. & Magnus, J.R., 2011. "WALS estimation and forecasting in factor-based dynamic models with an application to Armenia," Other publications TiSEM 419d588e-7827-4cdd-b989-4, Tilburg University, School of Economics and Management.
    11. Giuseppe De Luca & Jan R. Magnus & Franco Peracchi, 2020. "Sampling properties of the Bayesian posterior mean with an application to WALS estimation," Tinbergen Institute Discussion Papers 20-015/III, Tinbergen Institute.
    12. Xinyu Zhang & Alan T. K. Wan & Sherry Z. Zhou, 2011. "Focused Information Criteria, Model Selection, and Model Averaging in a Tobit Model With a Nonzero Threshold," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(1), pages 132-142, June.
    13. Yin-Wong Cheung & Wenhao Wang, 2019. "A Jackknife Model Averaging Analysis of RMB Misalignment Estimates," CESifo Working Paper Series 7840, CESifo.
    14. Valentino Dardanoni & Giuseppe De Luca & Salvatore Modica & Franco Peracchi, 2011. "A Generalized Missing-Indicator Approach to Regression with Imputed Covariates," EIEF Working Papers Series 1111, Einaudi Institute for Economics and Finance (EIEF), revised May 2011.
    15. António Afonso & Florence Huart & João Tovar Jalles & Piotr Stanek, 2018. "Twin Deficits Revisited: a role for fiscal institutions?," Working Papers REM 2018/31, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
    16. Christopher F. Parmeter & Alan T. K. Wan & Xinyu Zhang, 2019. "Model averaging estimators for the stochastic frontier model," Journal of Productivity Analysis, Springer, vol. 51(2), pages 91-103, June.
    17. Zhao, Shangwei & Zhou, Jianhong & Li, Hongjun, 2016. "Model averaging with high-dimensional dependent data," Economics Letters, Elsevier, vol. 148(C), pages 68-71.
    18. Berger, Michael & Pock, Markus & Reiss, Miriam & Röhrling, Gerald & Czypionka, Thomas, 2023. "Exploring the effectiveness of demand-side retail pharmaceutical expenditure reforms: cross-country evidence from weighted-average least squares estimation," LSE Research Online Documents on Economics 116928, London School of Economics and Political Science, LSE Library.
    19. Michael Berger & Markus Pock & Miriam Reiss & Gerald Röhrling & Thomas Czypionka, 2023. "Exploring the effectiveness of demand-side retail pharmaceutical expenditure reforms," International Journal of Health Economics and Management, Springer, vol. 23(1), pages 149-172, March.
    20. Shangwei Zhao & Aman Ullah & Xinyu Zhang, 2018. "A Class of Model Averaging Estimators," Working Paper series 18-11, Rimini Centre for Economic Analysis.
    21. Sufrauj, Shamnaaz & Schiavo, Stefano & Riccaboni, Massimo, 2014. "The Structure and Growth of World Trade, and the Role of Europe in the Global Economy," MPRA Paper 54122, University Library of Munich, Germany.
    22. De Luca, G. & Magnus, J.R., 2011. "Bayesian Model Averaging and Weighted Average Least Squares : Equivariance, Stability, and Numerical Issues," Discussion Paper 2011-082, Tilburg University, Center for Economic Research.
    23. Zhao, Shangwei & Ullah, Aman & Zhang, Xinyu, 2018. "A class of model averaging estimators," Economics Letters, Elsevier, vol. 162(C), pages 101-106.
    24. Aedın Doris & Donal O’Neill & Olive Sweetman, 2011. "GMM estimation of the covariance structure of longitudinal data on earnings," Stata Journal, StataCorp LP, vol. 11(3), pages 439-459, September.
    25. Judith Anne Clarke, 2017. "Model Averaging OLS and 2SLS: An Application of the WALS Procedure," Econometrics Working Papers 1701, Department of Economics, University of Victoria.
    26. Magnus, J.R. & Wang, W. & Zhang, Xinyu, 2012. "WALS Prediction," Other publications TiSEM 7715e942-b446-4985-8216-f, Tilburg University, School of Economics and Management.

  2. He, Angela W.W. & Kwok, Jerry T.K. & Wan, Alan T.K., 2010. "An empirical model of daily highs and lows of West Texas Intermediate crude oil prices," Energy Economics, Elsevier, vol. 32(6), pages 1499-1506, November.

    Cited by:

    1. Henning Fischer & Ángela Blanco‐FERNÁndez & Peter Winker, 2016. "Predicting Stock Return Volatility: Can We Benefit from Regression Models for Return Intervals?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(2), pages 113-146, March.
    2. Lina M. Cortés & Javier Perote & Andrés Mora-Valencia, 2017. "Implicit probability distribution for WTI options: The Black Scholes vs. the semi-nonparametric approach," Documentos de Trabajo de Valor Público 15923, Universidad EAFIT.
    3. Gloria Gonzalez‐Rivera & Yun Luo & Esther Ruiz, 2020. "Prediction regions for interval‐valued time series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(4), pages 373-390, June.
    4. Alia Afzal & Philipp Sibbertsen, 2021. "Modeling fractional cointegration between high and low stock prices in Asian countries," Empirical Economics, Springer, vol. 60(2), pages 661-682, February.
    5. Piao Wang & Shahid Hussain Gurmani & Zhifu Tao & Jinpei Liu & Huayou Chen, 2024. "Interval time series forecasting: A systematic literature review," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 249-285, March.
    6. Banerjee, Ameet Kumar & Sensoy, Ahmet & Goodell, John W., 2024. "Connectivity and spillover during crises: Highlighting the prominent and growing role of green energy," Energy Economics, Elsevier, vol. 129(C).
    7. Corbet, Shaen & Goodell, John W. & Günay, Samet, 2020. "Co-movements and spillovers of oil and renewable firms under extreme conditions: New evidence from negative WTI prices during COVID-19," Energy Economics, Elsevier, vol. 92(C).
    8. Chen, Yanhui & Zhang, Chuan & He, Kaijian & Zheng, Aibing, 2018. "Multi-step-ahead crude oil price forecasting using a hybrid grey wave model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 98-110.
    9. Tao Xiong & Yukun Bao & Zhongyi Hu, 2014. "Multiple-output support vector regression with a firefly algorithm for interval-valued stock price index forecasting," Papers 1401.1916, arXiv.org.
    10. González-Rivera, Gloria & Luo, Yun, 2019. "Prediction regions for interval-valued time series," DES - Working Papers. Statistics and Econometrics. WS 29054, Universidad Carlos III de Madrid. Departamento de Estadística.
    11. Wei Yang & Ai Han & Yongmiao Hong & Shouyang Wang, 2016. "Analysis of crisis impact on crude oil prices: a new approach with interval time series modelling," Quantitative Finance, Taylor & Francis Journals, vol. 16(12), pages 1917-1928, December.
    12. Zheng, Li & Sun, Yuying & Wang, Shouyang, 2024. "A novel interval-based hybrid framework for crude oil price forecasting and trading," Energy Economics, Elsevier, vol. 130(C).
    13. Mostafa, Mohamed M. & El-Masry, Ahmed A., 2016. "Oil price forecasting using gene expression programming and artificial neural networks," Economic Modelling, Elsevier, vol. 54(C), pages 40-53.
    14. T.S. Tuang Buansing & Amos Golan & Aman Ullah, 2019. "Information-Theoretic Approach for Forecasting Interval-Valued SP500 Daily Returns," Working Papers 201922, University of California at Riverside, Department of Economics.
    15. Lin, Boqiang & Zhang, Li & Wu, Ya, 2012. "Evaluation of electricity saving potential in China's chemical industry based on cointegration," Energy Policy, Elsevier, vol. 44(C), pages 320-330.
    16. Xiong, Tao & Bao, Yukun & Hu, Zhongyi, 2013. "Beyond one-step-ahead forecasting: Evaluation of alternative multi-step-ahead forecasting models for crude oil prices," Energy Economics, Elsevier, vol. 40(C), pages 405-415.
    17. Cortés, Lina M. & Mora-Valencia, Andrés & Perote, Javier, 2020. "Retrieving the implicit risk neutral density of WTI options with a semi-nonparametric approach," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    18. Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    19. Wu, Chunying & Wang, Jianzhou & Hao, Yan, 2022. "Deterministic and uncertainty crude oil price forecasting based on outlier detection and modified multi-objective optimization algorithm," Resources Policy, Elsevier, vol. 77(C).
    20. Xiong, Tao & Li, Chongguang & Bao, Yukun, 2017. "Interval-valued time series forecasting using a novel hybrid HoltI and MSVR model," Economic Modelling, Elsevier, vol. 60(C), pages 11-23.
    21. Chang, Meng-Shiuh & Ju, Peijie & Liu, Yilei & Hsueh, Shao-Chieh, 2022. "Determining hedges and safe havens for stocks using interval analysis," The North American Journal of Economics and Finance, Elsevier, vol. 61(C).
    22. Sun, Yuying & Zhang, Xinyu & Wan, Alan T.K. & Wang, Shouyang, 2022. "Model averaging for interval-valued data," European Journal of Operational Research, Elsevier, vol. 301(2), pages 772-784.
    23. Taiyong Li & Min Zhou & Chaoqi Guo & Min Luo & Jiang Wu & Fan Pan & Quanyi Tao & Ting He, 2016. "Forecasting Crude Oil Price Using EEMD and RVM with Adaptive PSO-Based Kernels," Energies, MDPI, vol. 9(12), pages 1-21, December.
    24. Duan, Huiming & Liu, Yunmei & Wang, Guan, 2022. "A novel dynamic time-delay grey model of energy prices and its application in crude oil price forecasting," Energy, Elsevier, vol. 251(C).

  3. Wan, Alan T.K. & Zhang, Xinyu & Zou, Guohua, 2010. "Least squares model averaging by Mallows criterion," Journal of Econometrics, Elsevier, vol. 156(2), pages 277-283, June.

    Cited by:

    1. Jia Chen & Degui Li & Oliver Linton & Zudi Lu, 2015. "Semiparametric model averaging of ultra-high dimensional time series," CeMMAP working papers CWP62/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    2. Magnus, J.R. & Wang, W. & Zhang, Xinyu, 2012. "WALS Prediction," Discussion Paper 2012-043, Tilburg University, Center for Economic Research.
    3. Steven F. Lehrer & Tian Xie, 2022. "The Bigger Picture: Combining Econometrics with Analytics Improves Forecasts of Movie Success," Management Science, INFORMS, vol. 68(1), pages 189-210, January.
    4. Qingfeng Liu & Ryo Okui & Arihiro Yoshimura, 2016. "Generalized Least Squares Model Averaging," Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1692-1752, December.
    5. Zhang, Xiaomeng & Zhang, Xinyu, 2023. "Optimal model averaging based on forward-validation," Journal of Econometrics, Elsevier, vol. 237(2).
    6. Schomaker, Michael & Heumann, Christian, 2014. "Model selection and model averaging after multiple imputation," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 758-770.
    7. Aman Ullah & Huansha Wang, 2013. "Parametric and Nonparametric Frequentist Model Selection and Model Averaging," Econometrics, MDPI, vol. 1(2), pages 1-23, September.
    8. Yang Feng & Qingfeng Liu, 2020. "Nested Model Averaging on Solution Path for High-dimensional Linear Regression," Papers 2005.08057, arXiv.org.
    9. Shangwei Zhao & Jun Liao & Dalei Yu, 2020. "Model averaging estimator in ridge regression and its large sample properties," Statistical Papers, Springer, vol. 61(4), pages 1719-1739, August.
    10. Aman Ullah & Alan T.K. Wan & Huansha Wang & Xinyu Zhang & Guohua Zou, 2014. "A Semiparametric Generalized Ridge Estimator and Link with Model Averaging," Working Papers 201412, University of California at Riverside, Department of Economics.
    11. Toru Kitagawa & Chris Muris, 2013. "Covariate selection and model averaging in semiparametric estimation of treatment effects," CeMMAP working papers CWP61/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    12. Guozhi Hu & Weihu Cheng & Jie Zeng, 2023. "Optimal Model Averaging for Semiparametric Partially Linear Models with Censored Data," Mathematics, MDPI, vol. 11(3), pages 1-21, February.
    13. Wan, Alan T.K. & Zhang, Xinyu & Wang, Shouyang, 2014. "Frequentist model averaging for multinomial and ordered logit models," International Journal of Forecasting, Elsevier, vol. 30(1), pages 118-128.
    14. Xiaochao Xia, 2021. "Model averaging prediction for nonparametric varying-coefficient models with B-spline smoothing," Statistical Papers, Springer, vol. 62(6), pages 2885-2905, December.
    15. Zhao, Shangwei & Zhang, Xinyu & Gao, Yichen, 2016. "Model averaging with averaging covariance matrix," Economics Letters, Elsevier, vol. 145(C), pages 214-217.
    16. Toru Kitagawa & Chris Muris, 2015. "Model averaging in semiparametric estimation of treatment effects," CeMMAP working papers CWP46/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    17. Jan R. Magnus & Wendun Wang & Xinyu Zhang, 2016. "Weighted-Average Least Squares Prediction," Econometric Reviews, Taylor & Francis Journals, vol. 35(6), pages 1040-1074, June.
    18. Jingwen Tu & Hu Yang & Chaohui Guo & Jing Lv, 2021. "Model averaging marginal regression for high dimensional conditional quantile prediction," Statistical Papers, Springer, vol. 62(6), pages 2661-2689, December.
    19. Baihua He & Yanyan Liu & Guosheng Yin & Yuanshan Wu, 2023. "Model aggregation for doubly divided data with large size and large dimension," Computational Statistics, Springer, vol. 38(1), pages 509-529, March.
    20. Haili Zhang & Guohua Zou, 2020. "Cross-Validation Model Averaging for Generalized Functional Linear Model," Econometrics, MDPI, vol. 8(1), pages 1-35, February.
    21. Zhang, Xinyu & Liu, Chu-An, 2023. "Model averaging prediction by K-fold cross-validation," Journal of Econometrics, Elsevier, vol. 235(1), pages 280-301.
    22. Shi, Pengfei & Zhang, Xinyu & Zhong, Wei, 2024. "Estimating conditional average treatment effects with heteroscedasticity by model averaging and matching," Economics Letters, Elsevier, vol. 238(C).
    23. Liao, Jun & Zou, Guohua & Gao, Yan & Zhang, Xinyu, 2021. "Model averaging prediction for time series models with a diverging number of parameters," Journal of Econometrics, Elsevier, vol. 223(1), pages 190-221.
    24. Chen, Yi-Ting & Liu, Chu-An, 2023. "Model averaging for asymptotically optimal combined forecasts," Journal of Econometrics, Elsevier, vol. 235(2), pages 592-607.
    25. Yuting Wei & Qihua Wang & Wei Liu, 2021. "Model averaging for linear models with responses missing at random," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(3), pages 535-553, June.
    26. Liu, Chu-An, 2012. "A plug-in averaging estimator for regressions with heteroskedastic errors," MPRA Paper 41414, University Library of Munich, Germany.
    27. Jianchun Fang & Wanshan Wu & Zhou Lu & Eunho Cho, 2019. "Using Baidu Index To Nowcast Mobile Phone Sales In China," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 64(01), pages 83-96, March.
    28. Xie, Tian, 2015. "Prediction model averaging estimator," Economics Letters, Elsevier, vol. 131(C), pages 5-8.
    29. Tao Huang & Jialiang Li, 2018. "Semiparametric model average prediction in panel data analysis," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 30(1), pages 125-144, January.
    30. Gao, Yan & Zhang, Xinyu & Wang, Shouyang & Chong, Terence Tai Leung & Zou, Guohua, 2017. "Frequentist model averaging for threshold models," MPRA Paper 92036, University Library of Munich, Germany.
    31. Michael Schomaker & Christian Heumann, 2020. "When and when not to use optimal model averaging," Statistical Papers, Springer, vol. 61(5), pages 2221-2240, October.
    32. Longbiao Liao & Jinghao Liu, 2024. "Model Averaging for Accelerated Failure Time Models with Missing Censoring Indicators," Mathematics, MDPI, vol. 12(5), pages 1-16, February.
    33. Xinyu Zhang & Alan T. K. Wan & Sherry Z. Zhou, 2011. "Focused Information Criteria, Model Selection, and Model Averaging in a Tobit Model With a Nonzero Threshold," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(1), pages 132-142, June.
    34. Ruoyao Shi, 2021. "An Averaging Estimator for Two Step M Estimation in Semiparametric Models," Working Papers 202105, University of California at Riverside, Department of Economics.
    35. Xinyu Zhang & Dalei Yu & Guohua Zou & Hua Liang, 2016. "Optimal Model Averaging Estimation for Generalized Linear Models and Generalized Linear Mixed-Effects Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1775-1790, October.
    36. Jialiang Li & Tonghui Yu & Jing Lv & Mei‐Ling Ting Lee, 2021. "Semiparametric model averaging prediction for lifetime data via hazards regression," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(5), pages 1187-1209, November.
    37. Wang, Weiwei & Zhang, Qi & Zhang, Xinyu & Li, Xinmin, 2021. "Model averaging based on generalized method of moments," Economics Letters, Elsevier, vol. 200(C).
    38. Yin-Wong Cheung & Wenhao Wang, 2019. "A Jackknife Model Averaging Analysis of RMB Misalignment Estimates," CESifo Working Paper Series 7840, CESifo.
    39. Liu, Chu-An, 2015. "Distribution theory of the least squares averaging estimator," Journal of Econometrics, Elsevier, vol. 186(1), pages 142-159.
    40. Liu, Qingfeng, 2011. "Generalized Cp Model Averaging for Heteroskedastic Models," ビジネス創造センターディスカッション・ペーパー (Discussion papers of the Center for Business Creation) 10252/4544, Otaru University of Commerce.
    41. Giuseppe Luca & Jan R. Magnus & Franco Peracchi, 2023. "Weighted-Average Least Squares (WALS): Confidence and Prediction Intervals," Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1637-1664, April.
    42. Kenichiro McAlinn & Kosaku Takanashi, 2019. "Mean-shift least squares model averaging," Papers 1912.01194, arXiv.org.
    43. Zhang, Xinyu & Lu, Zudi & Zou, Guohua, 2013. "Adaptively combined forecasting for discrete response time series," Journal of Econometrics, Elsevier, vol. 176(1), pages 80-91.
    44. Zhang, Xinyu & Wan, Alan T.K. & Zou, Guohua, 2013. "Model averaging by jackknife criterion in models with dependent data," Journal of Econometrics, Elsevier, vol. 174(2), pages 82-94.
    45. Steven Lehrer & Tian Xie, 2016. "Box Office Buzz: Does Social Media Data Steal the Show from Model Uncertainty When Forecasting for Hollywood?," NBER Working Papers 22959, National Bureau of Economic Research, Inc.
    46. Liao, Jun & Zou, Guohua, 2020. "Corrected Mallows criterion for model averaging," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    47. Luca Margaritella & Joakim Westerlund, 2023. "Using information criteria to select averages in CCE," The Econometrics Journal, Royal Economic Society, vol. 26(3), pages 405-421.
    48. Yan, Xiaodong & Wang, Hongni & Wang, Wei & Xie, Jinhan & Ren, Yanyan & Wang, Xinjun, 2021. "Optimal model averaging forecasting in high-dimensional survival analysis," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1147-1155.
    49. Ren, Yu & Liang, Xuanxuan & Wang, Qin, 2021. "Short-term exchange rate forecasting: A panel combination approach," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 73(C).
    50. Christian Brownlees & Vladislav Morozov, 2022. "Unit Averaging for Heterogeneous Panels," Papers 2210.14205, arXiv.org, revised May 2024.
    51. Cheng, Tzu-Chang F. & Ing, Ching-Kang & Yu, Shu-Hui, 2015. "Toward optimal model averaging in regression models with time series errors," Journal of Econometrics, Elsevier, vol. 189(2), pages 321-334.
    52. Tian Xie, 2012. "Least Squares Model Averaging By Prediction Criterion," Working Paper 1299, Economics Department, Queen's University.
    53. Liao, Jun & Zong, Xianpeng & Zhang, Xinyu & Zou, Guohua, 2019. "Model averaging based on leave-subject-out cross-validation for vector autoregressions," Journal of Econometrics, Elsevier, vol. 209(1), pages 35-60.
    54. Fang, Fang & Li, Jialiang & Xia, Xiaochao, 2022. "Semiparametric model averaging prediction for dichotomous response," Journal of Econometrics, Elsevier, vol. 229(2), pages 219-245.
    55. Christopher F. Parmeter & Alan T. K. Wan & Xinyu Zhang, 2019. "Model averaging estimators for the stochastic frontier model," Journal of Productivity Analysis, Springer, vol. 51(2), pages 91-103, June.
    56. Liao, Jun & Wan, Alan T.K. & He, Shuyuan & Zou, Guohua, 2022. "Optimal model averaging for multivariate regression models," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    57. Chen, Xingyi & Li, Haiqi & Zhang, Jing, 2023. "Complete subset averaging approach for high-dimensional generalized linear models," Economics Letters, Elsevier, vol. 226(C).
    58. Hui Xiao & Yiguo Sun, 2019. "On Tuning Parameter Selection in Model Selection and Model Averaging: A Monte Carlo Study," JRFM, MDPI, vol. 12(3), pages 1-16, June.
    59. Xie, Tian, 2017. "Heteroscedasticity-robust model screening: A useful toolkit for model averaging in big data analytics," Economics Letters, Elsevier, vol. 151(C), pages 119-122.
    60. Gao, Yichen & Long, Wei & Wang, Zhengwei, 2015. "Estimating average treatment effect by model averaging," Economics Letters, Elsevier, vol. 135(C), pages 42-45.
    61. Shangwei Zhao, 2014. "Model averaging based on James–Stein estimators," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(8), pages 1013-1022, November.
    62. Qiu, Yue & Wang, Zongrun & Xie, Tian & Zhang, Xinyu, 2021. "Forecasting Bitcoin realized volatility by exploiting measurement error under model uncertainty," Journal of Empirical Finance, Elsevier, vol. 62(C), pages 179-201.
    63. Lu, Xun & Su, Liangjun, 2015. "Jackknife model averaging for quantile regressions," Journal of Econometrics, Elsevier, vol. 188(1), pages 40-58.
    64. Edvard Bakhitov, 2020. "Frequentist Shrinkage under Inequality Constraints," Papers 2001.10586, arXiv.org.
    65. Zhang, Xinyu, 2013. "Model averaging with covariates that are missing completely at random," Economics Letters, Elsevier, vol. 121(3), pages 360-363.
    66. Magnus, Jan R. & Wan, Alan T.K. & Zhang, Xinyu, 2011. "Weighted average least squares estimation with nonspherical disturbances and an application to the Hong Kong housing market," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1331-1341, March.
    67. Tian Xie, 2019. "Forecast Bitcoin Volatility with Least Squares Model Averaging," Econometrics, MDPI, vol. 7(3), pages 1-20, September.
    68. Barry L. Nelson & Alan T. K. Wan & Guohua Zou & Xinyu Zhang & Xi Jiang, 2021. "Reducing Simulation Input-Model Risk via Input Model Averaging," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 672-684, May.
    69. Povilas Lastauskas & Julius Stakénas, 2019. "Does It Matter When Labor Market Reforms Are Implemented? The Role of the Monetary Policy Environment," CESifo Working Paper Series 7844, CESifo.
    70. Povilas Lastauskas & Julius Stak.enas, 2024. "Labor Market Policies in High- and Low-Interest Rate Environments: Evidence from the Euro Area," Papers 2410.12024, arXiv.org.
    71. Yuan, Chaoxia & Fang, Fang & Ni, Lyu, 2022. "Mallows model averaging with effective model size in fragmentary data prediction," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    72. Yongmiao Hong & Tae-Hwy Lee & Yuying Sun & Shouyang Wang & Xinyu Zhang, 2017. "Time-varying Model Averaging," Working Papers 202001, University of California at Riverside, Department of Economics.
    73. Shou-Yung Yin & Chu-An Liu & Chang-Ching Lin, 2016. "Focused Information Criterion and Model Averaging for Large Panels with a Multifactor Error Structure," IEAS Working Paper : academic research 16-A016, Institute of Economics, Academia Sinica, Taipei, Taiwan.
    74. De Bin, Riccardo & Boulesteix, Anne-Laure & Sauerbrei, Willi, 2017. "Detection of influential points as a byproduct of resampling-based variable selection procedures," Computational Statistics & Data Analysis, Elsevier, vol. 116(C), pages 19-31.
    75. Dong, Qingkai & Liu, Binxia & Zhao, Hui, 2023. "Weighted least squares model averaging for accelerated failure time models," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).
    76. Peng, Jingfu & Yang, Yuhong, 2022. "On improvability of model selection by model averaging," Journal of Econometrics, Elsevier, vol. 229(2), pages 246-262.
    77. Alena Skolkova, 2023. "Model Averaging with Ridge Regularization," CERGE-EI Working Papers wp758, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
    78. Wei, Yuting & Wang, Qihua, 2021. "Cross-validation-based model averaging in linear models with response missing at random," Statistics & Probability Letters, Elsevier, vol. 171(C).
    79. Hongwei Zhang & Qiang He & Ben Jacobsen & Fuwei Jiang, 2020. "Forecasting stock returns with model uncertainty and parameter instability," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(5), pages 629-644, August.
    80. Zhang, Xinyu & Yu, Jihai, 2018. "Spatial weights matrix selection and model averaging for spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 203(1), pages 1-18.
    81. Qingfeng Liu & Andrey L. Vasnev, 2019. "A Combination Method for Averaging OLS and GLS Estimators," Econometrics, MDPI, vol. 7(3), pages 1-12, September.
    82. Wei Qian & Craig A. Rolling & Gang Cheng & Yuhong Yang, 2019. "On the Forecast Combination Puzzle," Econometrics, MDPI, vol. 7(3), pages 1-26, September.
    83. Zhao, Shangwei & Xie, Tian & Ai, Xin & Yang, Guangren & Zhang, Xinyu, 2023. "Correcting sample selection bias with model averaging for consumer demand forecasting," Economic Modelling, Elsevier, vol. 123(C).
    84. Jie Zeng & Weihu Cheng & Guozhi Hu, 2023. "Optimal Model Averaging Estimation for the Varying-Coefficient Partially Linear Models with Missing Responses," Mathematics, MDPI, vol. 11(8), pages 1-21, April.
    85. Tsay, Wen-Jen, 2021. "Estimating cartel damages with model averaging approaches," International Review of Law and Economics, Elsevier, vol. 68(C).
    86. Rongjie Jiang & Liming Wang & Yang Bai, 2021. "Optimal model averaging estimator for semi-functional partially linear models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(2), pages 167-194, February.
    87. Chu-An Liu & Biing-Shen Kuo & Wen-Jen Tsay, 2017. "Autoregressive Spectral Averaging Estimator," IEAS Working Paper : academic research 17-A013, Institute of Economics, Academia Sinica, Taipei, Taiwan.
    88. Hansen, Bruce E. & Racine, Jeffrey S., 2012. "Jackknife model averaging," Journal of Econometrics, Elsevier, vol. 167(1), pages 38-46.
    89. Haowen Bao & Zongwu Cai & Yuying Sun & Shouyang Wang, 2023. "Penalized Model Averaging for High Dimensional Quantile Regressions," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202302, University of Kansas, Department of Economics, revised Jan 2023.
    90. Xu Cheng & Zhipeng Liao & Ruoyao Shi, 2013. "Uniform Asymptotic Risk of Averaging GMM Estimator Robust to Misspecification, Second Version," PIER Working Paper Archive 15-017, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 25 Mar 2015.
    91. Michael Schomaker, 2012. "Shrinkage averaging estimation," Statistical Papers, Springer, vol. 53(4), pages 1015-1034, November.
    92. Ryan Greenaway-McGrevy & Kade Sorensen, 2021. "A spatial model averaging approach to measuring house prices," Journal of Spatial Econometrics, Springer, vol. 2(1), pages 1-32, December.
    93. Magnus, J.R. & Wang, W. & Zhang, Xinyu, 2012. "WALS Prediction," Other publications TiSEM 7715e942-b446-4985-8216-f, Tilburg University, School of Economics and Management.

  4. Schomaker, Michael & Wan, Alan T.K. & Heumann, Christian, 2010. "Frequentist Model Averaging with missing observations," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3336-3347, December.

    Cited by:

    1. Schomaker, Michael & Heumann, Christian, 2014. "Model selection and model averaging after multiple imputation," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 758-770.
    2. Shangwei Zhao & Jun Liao & Dalei Yu, 2020. "Model averaging estimator in ridge regression and its large sample properties," Statistical Papers, Springer, vol. 61(4), pages 1719-1739, August.
    3. Jiming Jiang & Thuan Nguyen & J. Sunil Rao, 2015. "The E-MS Algorithm: Model Selection With Incomplete Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1136-1147, September.
    4. Yuting Wei & Qihua Wang & Wei Liu, 2021. "Model averaging for linear models with responses missing at random," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(3), pages 535-553, June.
    5. Xinyu Zhang & Alan T. K. Wan & Sherry Z. Zhou, 2011. "Focused Information Criteria, Model Selection, and Model Averaging in a Tobit Model With a Nonzero Threshold," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(1), pages 132-142, June.
    6. Zhang, Xinyu & Wan, Alan T.K. & Zou, Guohua, 2013. "Model averaging by jackknife criterion in models with dependent data," Journal of Econometrics, Elsevier, vol. 174(2), pages 82-94.
    7. Zhao, Shangwei & Zhou, Jianhong & Li, Hongjun, 2016. "Model averaging with high-dimensional dependent data," Economics Letters, Elsevier, vol. 148(C), pages 68-71.
    8. Hai Wang & Xinjie Chen & Nancy Flournoy, 2016. "The focused information criterion for varying-coefficient partially linear measurement error models," Statistical Papers, Springer, vol. 57(1), pages 99-113, March.
    9. Zhang, Xinyu, 2013. "Model averaging with covariates that are missing completely at random," Economics Letters, Elsevier, vol. 121(3), pages 360-363.
    10. Schomaker Michael & Heumann Christian, 2011. "Model Averaging in Factor Analysis: An Analysis of Olympic Decathlon Data," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 7(1), pages 1-15, January.
    11. Magnus, Jan R. & Wan, Alan T.K. & Zhang, Xinyu, 2011. "Weighted average least squares estimation with nonspherical disturbances and an application to the Hong Kong housing market," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1331-1341, March.
    12. Yuan, Chaoxia & Fang, Fang & Ni, Lyu, 2022. "Mallows model averaging with effective model size in fragmentary data prediction," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    13. Zhimeng Sun & Zhi Su & Jingyi Ma, 2014. "Focused vector information criterion model selection and model averaging regression with missing response," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(3), pages 415-432, April.
    14. Nitzan Cohen & Yakir Berchenko, 2021. "Normalized Information Criteria and Model Selection in the Presence of Missing Data," Mathematics, MDPI, vol. 9(19), pages 1-23, October.
    15. Michael Schomaker, 2012. "Shrinkage averaging estimation," Statistical Papers, Springer, vol. 53(4), pages 1015-1034, November.

  5. Zhou, Yong & Wan, Alan T.K. & Xie, Shangyu & Wang, Xiaojing, 2010. "Wavelet analysis of change-points in a non-parametric regression with heteroscedastic variance," Journal of Econometrics, Elsevier, vol. 159(1), pages 183-201, November.

    Cited by:

    1. Chen, Heng & Fan, Yanqin, 2019. "Identification and wavelet estimation of weighted ATE under discontinuous and kink incentive assignment mechanisms," Journal of Econometrics, Elsevier, vol. 212(2), pages 476-502.
    2. Jingle Wang & Ming Zheng, 2012. "Wavelet detection of change points in hazard rate models with censored dependent data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(3), pages 765-781.
    3. Yujiao Yang & Qiongxia Song, 2014. "Jump detection in time series nonparametric regression models: a polynomial spline approach," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(2), pages 325-344, April.
    4. Guo, Yingwen & Zhou Z.F., Sherry, 2011. "Duration Analysis of Interest Rate Spells : Cross-National Study of Interest Rate Policy," Hitotsubashi Journal of Economics, Hitotsubashi University, vol. 52(1), pages 1-11, June.
    5. Mingzhe Zou & Sasa Z. Djokic, 2020. "A Review of Approaches for the Detection and Treatment of Outliers in Processing Wind Turbine and Wind Farm Measurements," Energies, MDPI, vol. 13(16), pages 1-30, August.

  6. Cheung, Yan-Leung & Cheung, Yin-Wong & He, Angela W.W. & Wan, Alan T.K., 2010. "A trading strategy based on Callable Bull/Bear Contracts," Pacific-Basin Finance Journal, Elsevier, vol. 18(2), pages 186-198, April.

    Cited by:

    1. Henning Fischer & Ángela Blanco‐FERNÁndez & Peter Winker, 2016. "Predicting Stock Return Volatility: Can We Benefit from Regression Models for Return Intervals?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(2), pages 113-146, March.
    2. Adrian C. H. Lei, 2015. "Price and Volume Effects of Exchange‐Traded Barrier Options: Evidence from Callable Bull/Bear Contracts," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 35(11), pages 1042-1066, November.
    3. Alia Afzal & Philipp Sibbertsen, 2021. "Modeling fractional cointegration between high and low stock prices in Asian countries," Empirical Economics, Springer, vol. 60(2), pages 661-682, February.
    4. Park, Seongkyu “Gilbert” & Suen, Wing & Wan, Kam-Ming, 2022. "Call auction design and closing price manipulation: Evidence from the Hong Kong stock exchange," Journal of Financial Markets, Elsevier, vol. 58(C).
    5. Tao Xiong & Yukun Bao & Zhongyi Hu, 2014. "Multiple-output support vector regression with a firefly algorithm for interval-valued stock price index forecasting," Papers 1401.1916, arXiv.org.
    6. Caporin, Massimiliano & Ranaldo, Angelo & Santucci de Magistris, Paolo, 2012. "On the Predictability of Stock Prices: a Case for High and Low Prices," Working Papers on Finance 1213, University of St. Gallen, School of Finance.
    7. OlaOluwa S. Yaya & Xuan Vinh Vo & Ahamuefula E. Ogbonna & Adeolu O. Adewuyi, 2022. "Modelling cryptocurrency high–low prices using fractional cointegrating VAR," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 489-505, January.
    8. Leandro Maciel, 2020. "Technical analysis based on high and low stock prices forecasts: evidence for Brazil using a fractionally cointegrated VAR model," Empirical Economics, Springer, vol. 58(4), pages 1513-1540, April.
    9. He, Angela W.W. & Kwok, Jerry T.K. & Wan, Alan T.K., 2010. "An empirical model of daily highs and lows of West Texas Intermediate crude oil prices," Energy Economics, Elsevier, vol. 32(6), pages 1499-1506, November.
    10. Rima Ayu Shintyawati & Caturida Meiwanto Doktoralina & Nurhasanah & Sri Anah, 2020. "The Volume of Issuance of Government Islamic Securities SR-007 Series, 2015¨C2018," International Journal of Financial Research, International Journal of Financial Research, Sciedu Press, vol. 11(5), pages 56-68, October.
    11. Xiong, Tao & Li, Chongguang & Bao, Yukun, 2017. "Interval-valued time series forecasting using a novel hybrid HoltI and MSVR model," Economic Modelling, Elsevier, vol. 60(C), pages 11-23.
    12. Sun, Yuying & Zhang, Xinyu & Wan, Alan T.K. & Wang, Shouyang, 2022. "Model averaging for interval-valued data," European Journal of Operational Research, Elsevier, vol. 301(2), pages 772-784.

  7. Yan-Leung Cheung & Yin-Wong Cheung & Alan T. K. Wan, 2009. "A high-low model of daily stock price ranges," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(2), pages 103-119.
    See citations under working paper version above.
  8. Kazuhiro Ohtani & Alan Wan, 2009. "Comparison of the Stein and the usual estimators for the regression error variance under the Pitman nearness criterion when variables are omitted," Statistical Papers, Springer, vol. 50(1), pages 151-160, January.

    Cited by:

    1. Hu, Guikai & Yu, Shenghua & Luo, Han, 2015. "Comparisons of variance estimators in a misspecified linear model with elliptically contoured errors," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 266-276.

  9. Qin, Huaizhen & Wan, Alan T.K. & Zou, Guohua, 2009. "On the sensitivity of the one-sided t test to covariance misspecification," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1593-1609, September.

    Cited by:

    1. Magnus, Jan R. & Vasnev, Andrey L., 2015. "Interpretation and use of sensitivity in econometrics, illustrated with forecast combinations," International Journal of Forecasting, Elsevier, vol. 31(3), pages 769-781.

  10. Angela He & Alan Wan, 2009. "Predicting daily highs and lows of exchange rates: a cointegration analysis," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(11), pages 1191-1204.

    Cited by:

    1. Henning Fischer & Ángela Blanco‐FERNÁndez & Peter Winker, 2016. "Predicting Stock Return Volatility: Can We Benefit from Regression Models for Return Intervals?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(2), pages 113-146, March.
    2. Alia Afzal & Philipp Sibbertsen, 2021. "Modeling fractional cointegration between high and low stock prices in Asian countries," Empirical Economics, Springer, vol. 60(2), pages 661-682, February.
    3. Zhu, Mengrui & Xu, Hua & Wang, Minggang & Tian, Lixin, 2024. "Carbon price interval prediction method based on probability density recurrence network and interval multi-layer perceptron," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).
    4. Caporale, Guglielmo Maria & Gil-Alana, Luis A. & Poza, Carlos, 2020. "High and low prices and the range in the European stock markets: A long-memory approach," Research in International Business and Finance, Elsevier, vol. 52(C).
    5. Caporin, Massimiliano & Ranaldo, Angelo & Santucci de Magistris, Paolo, 2012. "On the Predictability of Stock Prices: a Case for High and Low Prices," Working Papers on Finance 1213, University of St. Gallen, School of Finance.
    6. OlaOluwa S. Yaya & Xuan Vinh Vo & Ahamuefula E. Ogbonna & Adeolu O. Adewuyi, 2022. "Modelling cryptocurrency high–low prices using fractional cointegrating VAR," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 489-505, January.
    7. Leandro Maciel, 2020. "Technical analysis based on high and low stock prices forecasts: evidence for Brazil using a fractionally cointegrated VAR model," Empirical Economics, Springer, vol. 58(4), pages 1513-1540, April.
    8. Alia Afzal & Philipp Sibbertsen, 2023. "Long Memory, Spurious Memory: Persistence in Range-Based Volatility of Exchange Rates," Open Economies Review, Springer, vol. 34(4), pages 789-811, September.
    9. He, Angela W.W. & Kwok, Jerry T.K. & Wan, Alan T.K., 2010. "An empirical model of daily highs and lows of West Texas Intermediate crude oil prices," Energy Economics, Elsevier, vol. 32(6), pages 1499-1506, November.
    10. Xiong, Tao & Li, Chongguang & Bao, Yukun, 2017. "Interval-valued time series forecasting using a novel hybrid HoltI and MSVR model," Economic Modelling, Elsevier, vol. 60(C), pages 11-23.
    11. Cheung, Yan-Leung & Cheung, Yin-Wong & He, Angela W.W. & Wan, Alan T.K., 2010. "A trading strategy based on Callable Bull/Bear Contracts," Pacific-Basin Finance Journal, Elsevier, vol. 18(2), pages 186-198, April.
    12. Leandro Maciel & Rosangela Ballini, 2021. "Functional Fuzzy Rule-Based Modeling for Interval-Valued Data: An Empirical Application for Exchange Rates Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 57(2), pages 743-771, February.
    13. Chang, Meng-Shiuh & Ju, Peijie & Liu, Yilei & Hsueh, Shao-Chieh, 2022. "Determining hedges and safe havens for stocks using interval analysis," The North American Journal of Economics and Finance, Elsevier, vol. 61(C).

  11. Zhou, Yong & Wan, Alan T. K & Wang, Xiaojing, 2008. "Estimating Equations Inference With Missing Data," Journal of the American Statistical Association, American Statistical Association, vol. 103(483), pages 1187-1199.

    Cited by:

    1. Ronghuo Wu & Yongsong Qin, 2022. "Empirical Likelihood Ratio Tests for Homogeneity of Multiple Populations in the Presence of Auxiliary Information," Mathematics, MDPI, vol. 10(13), pages 1-12, July.
    2. Xiaofeng Lv & Gupeng Zhang & Xinkuo Xu & Qinghai Li, 2017. "Bootstrap-calibrated empirical likelihood confidence intervals for the difference between two Gini indexes," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 15(2), pages 195-216, June.
    3. Ana M. Bianco & Graciela Boente & Wenceslao González-Manteiga & Ana Pérez-González, 2019. "Plug-in marginal estimation under a general regression model with missing responses and covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 106-146, March.
    4. Qiu, Zhiping & Chen, Xiaoping & Zhou, Yong, 2015. "A kernel-assisted imputation estimating method for the additive hazards model with missing censoring indicator," Statistics & Probability Letters, Elsevier, vol. 98(C), pages 89-97.
    5. Xuerong Chen & Alan T. K. Wan & Yong Zhou, 2015. "Efficient Quantile Regression Analysis With Missing Observations," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 723-741, June.
    6. Ana Pérez-González & Tomás R. Cotos-Yáñez & Wenceslao González-Manteiga & Rosa M. Crujeiras-Casais, 2021. "Goodness-of-fit tests for quantile regression with missing responses," Statistical Papers, Springer, vol. 62(3), pages 1231-1264, June.
    7. Zhong Guan & Jing Qin, 2017. "Empirical likelihood method for non-ignorable missing data problems," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(1), pages 113-135, January.
    8. Hao Cheng, 2024. "Inverse Probability-Weighted Estimation for Dynamic Structural Equation Model with Missing Data," Mathematics, MDPI, vol. 12(19), pages 1-20, September.
    9. Xiaofeng Lv & Rui Li, 2013. "Smoothed empirical likelihood analysis of partially linear quantile regression models with missing response variables," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(4), pages 317-347, October.
    10. Guo, Yingwen & Zhou Z.F., Sherry, 2011. "Duration Analysis of Interest Rate Spells : Cross-National Study of Interest Rate Policy," Hitotsubashi Journal of Economics, Hitotsubashi University, vol. 52(1), pages 1-11, June.
    11. Tang, Niansheng & Xia, Linli & Yan, Xiaodong, 2019. "Feature screening in ultrahigh-dimensional partially linear models with missing responses at random," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 208-227.
    12. Cui, Li-E & Zhao, Puying & Tang, Niansheng, 2022. "Generalized empirical likelihood for nonsmooth estimating equations with missing data," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    13. Schomaker, Michael & Wan, Alan T.K. & Heumann, Christian, 2010. "Frequentist Model Averaging with missing observations," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3336-3347, December.
    14. Zhuoer Sun & Suojin Wang, 2019. "Semiparametric estimation in regression with missing covariates using single-index models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1201-1232, October.
    15. Muller, Ursula U. & Van Keilegom, Ingrid, 2011. "Efficient parameter estimation in regression with missing responses," LIDAM Discussion Papers ISBA 2011026, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    16. Dong, Yuexiao & Xia, Qi & Tang, Cheng Yong & Li, Zeda, 2018. "On sufficient dimension reduction with missing responses through estimating equations," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 67-77.
    17. Cheng, Hao, 2021. "Importance sampling imputation algorithms in quantile regression with their application in CGSS data," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 498-508.
    18. Yang, Guangren & Zhou, Yong, 2014. "Semiparametric varying-coefficient study of mean residual life models," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 226-238.
    19. Huijuan Ma & Limin Peng & Zhumin Zhang & HuiChuan J. Lai, 2018. "Generalized accelerated recurrence time model for multivariate recurrent event data with missing event type," Biometrics, The International Biometric Society, vol. 74(3), pages 954-965, September.
    20. Xiaofeng Lv & Gupeng Zhang & Xinkuo Xu & Qinghai Li, 2017. "Bootstrap-calibrated empirical likelihood confidence intervals for the difference between two Gini indexes," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 15(2), pages 195-216, June.
    21. Yu Shen & Han-Ying Liang, 2018. "Quantile regression and its empirical likelihood with missing response at random," Statistical Papers, Springer, vol. 59(2), pages 685-707, June.
    22. Peisong Han, 2016. "Combining Inverse Probability Weighting and Multiple Imputation to Improve Robustness of Estimation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 246-260, March.

  12. Alan T.K. Wan & Guohua Zou & Huaizhen Qin, 2007. "On the sensitivity of the restricted least squares estimators to covariance misspecification," Econometrics Journal, Royal Economic Society, vol. 10(3), pages 471-487, November.

    Cited by:

    1. Zhang, Xinyu & Chen, Ti & Wan, Alan T.K. & Zou, Guohua, 2009. "Robustness of Stein-type estimators under a non-scalar error covariance structure," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2376-2388, November.
    2. Qin, Huaizhen & Wan, Alan T.K. & Zou, Guohua, 2009. "On the sensitivity of the one-sided t test to covariance misspecification," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1593-1609, September.
    3. Magnus, Jan R. & Vasnev, Andrey L., 2015. "Interpretation and use of sensitivity in econometrics, illustrated with forecast combinations," International Journal of Forecasting, Elsevier, vol. 31(3), pages 769-781.

  13. Helen X. H. Bao & Alan T. K. Wan, 2007. "Improved Estimators of Hedonic Housing Price Models," Journal of Real Estate Research, American Real Estate Society, vol. 29(3), pages 267-302.

    Cited by:

    1. Ansgar Belke & Jonas Keil, 2018. "Fundamental Determinants of Real Estate Prices: A Panel Study of German Regions," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 24(1), pages 25-45, February.
    2. Zhang, Xinyu & Chen, Ti & Wan, Alan T.K. & Zou, Guohua, 2009. "Robustness of Stein-type estimators under a non-scalar error covariance structure," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2376-2388, November.
    3. Julian D Olden & Mariana Tamayo, 2014. "Incentivizing the Public to Support Invasive Species Management: Eurasian Milfoil Reduces Lakefront Property Values," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-6, October.
    4. Magnus, Jan R. & Wan, Alan T.K. & Zhang, Xinyu, 2011. "Weighted average least squares estimation with nonspherical disturbances and an application to the Hong Kong housing market," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1331-1341, March.
    5. Ahmed, S. Ejaz & Nicol, Christopher J., 2012. "An application of shrinkage estimation to the nonlinear regression model," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3309-3321.

  14. Zou, Guohua & Wan, Alan T.K. & Wu, Xiaoyong & Chen, Ti, 2007. "Estimation of regression coefficients of interest when other regression coefficients are of no interest: The case of non-normal errors," Statistics & Probability Letters, Elsevier, vol. 77(8), pages 803-810, April.

    Cited by:

    1. Clarke, Judith A., 2008. "On weighted estimation in linear regression in the presence of parameter uncertainty," Economics Letters, Elsevier, vol. 100(1), pages 1-3, July.
    2. Giuseppe De Luca & Jan R. Magnus & Franco Peracchi, 2017. "Weighted-average least squares estimation of generalized linear models," EIEF Working Papers Series 1711, Einaudi Institute for Economics and Finance (EIEF), revised Aug 2017.
    3. An, Lihua & Nkurunziza, Sévérien & Fung, Karen Y. & Krewski, Daniel & Luginaah, Isaac, 2009. "Shrinkage estimation in general linear models," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2537-2549, May.
    4. Judith Anne Clarke, 2017. "Model Averaging OLS and 2SLS: An Application of the WALS Procedure," Econometrics Working Papers 1701, Department of Economics, University of Victoria.

  15. Alan T.K. Wan & Guohua Zou & Kazuhiro Ohtani, 2006. "Further results on optimal critical values of pre-test when estimating the regression error variance," Econometrics Journal, Royal Economic Society, vol. 9(1), pages 159-176, March.

    Cited by:

    1. Davy Paindaveine & Joséa Rasoafaraniaina & Thomas Verdebout, 2021. "Preliminary test estimation in uniformly locally asymptotically normal models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 689-707, June.
    2. Xinyu Zhang & Alan T. K. Wan & Sherry Z. Zhou, 2011. "Focused Information Criteria, Model Selection, and Model Averaging in a Tobit Model With a Nonzero Threshold," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(1), pages 132-142, June.
    3. Zhu, Rong & Zhou, Sherry Z.F., 2011. "Estimating the error variance after a pre-test for an interval restriction on the coefficients," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2312-2323, July.

  16. Helen X.H. Bao & Alan T.K. Wan, 2004. "On the Use of Spline Smoothing in Estimating Hedonic Housing Price Models: Empirical Evidence Using Hong Kong Data," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 32(3), pages 487-507, September.

    Cited by:

    1. Daniel Melser, 2023. "Selection Bias in Housing Price Indexes: The Characteristics Repeat Sales Approach," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 623-637, June.
    2. Hyung-Gun Kim & Kwong-Chin Hung & Sung Park, 2015. "Determinants of Housing Prices in Hong Kong: A Box-Cox Quantile Regression Approach," The Journal of Real Estate Finance and Economics, Springer, vol. 50(2), pages 270-287, February.
    3. Alan T. K. Wan & Shangyu Xie & Yong Zhou, 2017. "A varying coefficient approach to estimating hedonic housing price functions and their quantiles," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(11), pages 1979-1999, August.
    4. Simon K.C. Cheung, 2017. "A Localized Model for Residential Property Valuation: Nearest Neighbor with Attribute Differences," International Real Estate Review, Global Social Science Institute, vol. 20(2), pages 221-250.
    5. Reusens, Peter & Vastmans, Frank & Damen, Sven, 2023. "A new framework to disentangle the impact of changes in dwelling characteristics on house price indices," Economic Modelling, Elsevier, vol. 123(C).
    6. Renigier-Biłozor Małgorzata & Wiśniewski Radosław, 2012. "The Impact of Macroeconomic Factors on Residential Property Price Indices in Europe," Folia Oeconomica Stetinensia, Sciendo, vol. 12(2), pages 103-125, December.
    7. David Geltner & Anil Kumar & Alex M. Van de Minne, 2020. "Riskiness of Real Estate Development: A Perspective from Urban Economics and Option Value Theory," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 48(2), pages 406-445, June.
    8. Rajapaksa, Darshana & Zhu, Min & Lee, Boon & Hoang, Viet-Ngu & Wilson, Clevo & Managi, Shunsuke, 2017. "The impact of flood dynamics on property values," Land Use Policy, Elsevier, vol. 69(C), pages 317-325.
    9. Ekaterina Chernobai & Michael Reibel & Michael Carney, 2011. "Nonlinear Spatial and Temporal Effects of Highway Construction on House Prices," The Journal of Real Estate Finance and Economics, Springer, vol. 42(3), pages 348-370, April.
    10. Melser, Daniel & Syed, Iqbal, 2007. "Life Cycle Pricing and the Measurement of Inflation," MPRA Paper 16722, University Library of Munich, Germany, revised 07 Jul 2008.
    11. Norbert Pfeifer & Miriam Steurer, 2024. "Stabilizing Geo-Spatial Surfaces in Data-Sparse Regions -€“ An Application to Residential Property Prices," Graz Economics Papers 2024-11, University of Graz, Department of Economics.
    12. Shlomie Hazam & Daniel Felsenstein, 2007. "Terror, Fear and Behaviour in the Jerusalem Housing Market," Urban Studies, Urban Studies Journal Limited, vol. 44(13), pages 2529-2546, December.
    13. Kagie, M. & van Wezel, M.C., 2006. "Hedonic price models and indices based on boosting applied to the Dutch housing market," Econometric Institute Research Papers EI 2006-17, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    14. Lyudmila Gadasina & Lyudmila Vyunenko, 2022. "Applying spline-based phase analysis to macroeconomic dynamics," Dependence Modeling, De Gruyter, vol. 10(1), pages 207-214, January.
    15. Arnstein Gjestland & David McArthur & Liv Osland & Inge Thorsen, 2011. "Relationships between housing prices and commuting flows," ERSA conference papers ersa10p906, European Regional Science Association.
    16. Bing Zhu & Roland Füss & Nico Rottke, 2011. "The Predictive Power of Anisotropic Spatial Correlation Modeling in Housing Prices," The Journal of Real Estate Finance and Economics, Springer, vol. 42(4), pages 542-565, May.
    17. Magnus, Jan R. & Wan, Alan T.K. & Zhang, Xinyu, 2011. "Weighted average least squares estimation with nonspherical disturbances and an application to the Hong Kong housing market," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1331-1341, March.
    18. Iqbal Syed & Daniel Melser, 2008. "Prices over the Product Life Cycle: An Empirical Analysis," Discussion Papers 2008-25, School of Economics, The University of New South Wales.
    19. Leung, Tin Cheuk & Tsang, Kwok Ping, 2013. "Anchoring and loss aversion in the housing market: Implications on price dynamics," China Economic Review, Elsevier, vol. 24(C), pages 42-54.
    20. Łaszkiewicz, Edyta & Heyman, Axel & Chen, Xianwen & Cimburova, Zofie & Nowell, Megan & Barton, David N, 2022. "Valuing access to urban greenspace using non-linear distance decay in hedonic property pricing," Ecosystem Services, Elsevier, vol. 53(C).
    21. Rolf Färe & Shawna Grosskopf & Joaquín Maudos & Emili Tortosa-ausina, 2015. "Revisiting the quiet life hypothesis in banking using nonparametric techniques," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 16(1), pages 159-187, February.
    22. Martijn Kagie & Michiel Van Wezel, 2007. "Hedonic price models and indices based on boosting applied to the Dutch housing market," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 15(3‐4), pages 85-106, July.
    23. Chin-Tai Kuo & Yu-Hsi Yuan & Wang-Ze Gao & Chia-Ning Jao, 2023. "The Impact of Recognized Features of Uncomfortable Houses on Auction Prices: A Chinese Cultural Perspective," SAGE Open, , vol. 13(4), pages 21582440231, December.
    24. Sam K. Hui & Alvin Cheung & Jimmy Pang, 2010. "A Hierarchical Bayesian Approach for Residential Property Valuation:Application to Hong Kong Housing Market," International Real Estate Review, Global Social Science Institute, vol. 13(1), pages 1-29.
    25. Zhang, Qi, 2017. "The Balassa–Samuelson relationship: services, manufacturing and product quality," LSE Research Online Documents on Economics 68705, London School of Economics and Political Science, LSE Library.
    26. Robert J. Hill & Daniel Melser, 2007. "Comparing House Prices Across Regions and Time: An Hedonic Approach," Discussion Papers 2007-33, School of Economics, The University of New South Wales.
    27. Fabian Bastin & Cinzia Cirillo & Philippe L. Toint, 2010. "Estimating Nonparametric Random Utility Models with an Application to the Value of Time in Heterogeneous Populations," Transportation Science, INFORMS, vol. 44(4), pages 537-549, November.
    28. Zhang, Qi, 2017. "The Balassa–Samuelson relationship: Services, manufacturing and product quality," Journal of International Economics, Elsevier, vol. 106(C), pages 55-82.

  17. Qin, Huaizhen & Wan, Alan T.K., 2004. "ON THE PROPERTIES OF THE t- AND F-RATIOS IN LINEAR REGRESSIONS WITH NONNORMAL ERRORS," Econometric Theory, Cambridge University Press, vol. 20(4), pages 690-700, August.

    Cited by:

    1. Qin, Huaizhen & Wan, Alan T.K. & Zou, Guohua, 2009. "On the sensitivity of the one-sided t test to covariance misspecification," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1593-1609, September.
    2. Chris D. Orme & Takashi Yamagata, 2006. "The asymptotic distribution of the F-test statistic for individual effects," Econometrics Journal, Royal Economic Society, vol. 9(3), pages 404-422, November.

  18. Wan, Alan T. K. & Zou, Guohua, 2003. "Optimal critical values of pre-tests when estimating the regression error variance: analytical findings under a general loss structure," Journal of Econometrics, Elsevier, vol. 114(1), pages 165-196, May.

    Cited by:

    1. Magnus, J.R. & Wang, W. & Zhang, Xinyu, 2012. "WALS Prediction," Discussion Paper 2012-043, Tilburg University, Center for Economic Research.
    2. Helen X. H. Bao & Alan T. K. Wan, 2007. "Improved Estimators of Hedonic Housing Price Models," Journal of Real Estate Research, American Real Estate Society, vol. 29(3), pages 267-302.
    3. Wang, W., 2013. "Essays on model averaging and political economics," Other publications TiSEM 2e45376b-749e-4464-aba7-f, Tilburg University, School of Economics and Management.
    4. Jan R. Magnus & Wendun Wang & Xinyu Zhang, 2016. "Weighted-Average Least Squares Prediction," Econometric Reviews, Taylor & Francis Journals, vol. 35(6), pages 1040-1074, June.
    5. Xinyu Zhang & Alan T. K. Wan & Sherry Z. Zhou, 2011. "Focused Information Criteria, Model Selection, and Model Averaging in a Tobit Model With a Nonzero Threshold," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(1), pages 132-142, June.
    6. Zhu, Rong & Zhou, Sherry Z.F., 2011. "Estimating the error variance after a pre-test for an interval restriction on the coefficients," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2312-2323, July.
    7. Magnus, J.R. & Wang, W. & Zhang, Xinyu, 2012. "WALS Prediction," Other publications TiSEM 7715e942-b446-4985-8216-f, Tilburg University, School of Economics and Management.

  19. Alan Wan & Anoop Chaturvedi & Guohuazou Zou, 2003. "Unbiased estimation of the MSE matrices of improved estimators in linear regression," Journal of Applied Statistics, Taylor & Francis Journals, vol. 30(2), pages 173-189.

    Cited by:

    1. Helen X. H. Bao & Alan T. K. Wan, 2007. "Improved Estimators of Hedonic Housing Price Models," Journal of Real Estate Research, American Real Estate Society, vol. 29(3), pages 267-302.
    2. Zhang, Xinyu & Chen, Ti & Wan, Alan T.K. & Zou, Guohua, 2009. "Robustness of Stein-type estimators under a non-scalar error covariance structure," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2376-2388, November.
    3. Chaturvedi, Anoop & Gupta, Suchita & Bhatti, M. Ishaq, 2012. "Confidence ellipsoids based on a general family of shrinkage estimators for a linear model with non-spherical disturbances," Journal of Multivariate Analysis, Elsevier, vol. 104(1), pages 140-158, February.
    4. Boot, Tom, 2023. "Joint inference based on Stein-type averaging estimators in the linear regression model," Journal of Econometrics, Elsevier, vol. 235(2), pages 1542-1563.
    5. Ahmed, S. Ejaz & Nicol, Christopher J., 2012. "An application of shrinkage estimation to the nonlinear regression model," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3309-3321.

  20. Chaturvedi, Anoop & Wan, Alan T. K. & Singh, Shri P., 2002. "Improved Multivariate Prediction in a General Linear Model with an Unknown Error Covariance Matrix," Journal of Multivariate Analysis, Elsevier, vol. 83(1), pages 166-182, October.

    Cited by:

    1. Zhang, Xinyu & Chen, Ti & Wan, Alan T.K. & Zou, Guohua, 2009. "Robustness of Stein-type estimators under a non-scalar error covariance structure," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2376-2388, November.
    2. Shalabh,, 2013. "A revisit to efficient forecasting in linear regression models," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 161-170.
    3. Liu, Xu-Qing & Rong, Jian-Ying, 2007. "Quadratic prediction problems in finite populations," Statistics & Probability Letters, Elsevier, vol. 77(5), pages 483-489, March.
    4. Arashi, M. & Kibria, B.M. Golam & Norouzirad, M. & Nadarajah, S., 2014. "Improved preliminary test and Stein-rule Liu estimators for the ill-conditioned elliptical linear regression model," Journal of Multivariate Analysis, Elsevier, vol. 126(C), pages 53-74.
    5. Liu, Xu-Qing & Wang, Dong-Dong & Rong, Jian-Ying, 2009. "Quadratic prediction problems in multivariate linear models," Journal of Multivariate Analysis, Elsevier, vol. 100(2), pages 291-300, February.
    6. Gülesen Üstündağ Şiray, 2023. "Simultaneous prediction using target function based on principal components estimator with correlated errors," Statistical Papers, Springer, vol. 64(5), pages 1527-1628, October.

  21. Kazuhiro Ohtani & Alan Wan, 2002. "ON THE USE OF THE STEIN VARIANCE ESTIMATOR IN THE DOUBLE k-CLASS ESTIMATOR IN REGRESSION," Econometric Reviews, Taylor & Francis Journals, vol. 21(1), pages 121-134.

    Cited by:

    1. Helen X. H. Bao & Alan T. K. Wan, 2007. "Improved Estimators of Hedonic Housing Price Models," Journal of Real Estate Research, American Real Estate Society, vol. 29(3), pages 267-302.
    2. Akio Namba, 2003. "On the use of the Stein variance estimator in the double k-class estimator when each individual regression coefficient is estimated," Statistical Papers, Springer, vol. 44(1), pages 117-124, January.

  22. Ada Ho & Alan Wan, 2002. "Testing for covariance stationarity of stock returns in the presence of structural breaks: an intervention analysis," Applied Economics Letters, Taylor & Francis Journals, vol. 9(7), pages 441-447.

    Cited by:

    1. Mahua Barari & Nityananda Sarkar & Srikanta Kundu & Kushal Banik Chowdhury, 2014. "Forecasting House Prices in the United States with Multiple Structural Breaks," International Econometric Review (IER), Econometric Research Association, vol. 6(1), pages 1-23, April.
    2. Bátiz-Zuk, Enrique & Lara-Sánchez, José Luis, 2022. "Measuring the evolution of competition and the impact of the financial reform in the Mexican banking sector, 2008–2019," Research in International Business and Finance, Elsevier, vol. 59(C).
    3. Jaime Pinilla & Miguel Negrín, 2021. "Non-Parametric Generalized Additive Models as a Tool for Evaluating Policy Interventions," Mathematics, MDPI, vol. 9(4), pages 1-12, February.
    4. Andrew Worthington & Abbas Valadkhani, 2004. "Measuring the impact of natural disasters on capital markets: an empirical application using intervention analysis," Applied Economics, Taylor & Francis Journals, vol. 36(19), pages 2177-2186.
    5. Abbas Valadkhani, 2005. "Goods and Services Tax Effects on Goods and Services Included in the Consumer Price Index Basket," The Economic Record, The Economic Society of Australia, vol. 81(s1), pages 104-114, August.
    6. Josep Lluís Carrion-i-Silvestre & Andreu Sansó, 2023. "“Generalized Extreme Value Approximation to the CUMSUMQ Test for Constant Unconditional Variance in Heavy-Tailed Time Series”," AQR Working Papers 202305, University of Barcelona, Regional Quantitative Analysis Group, revised Jul 2023.
    7. Guo, Yingwen & Zhou Z.F., Sherry, 2011. "Duration Analysis of Interest Rate Spells : Cross-National Study of Interest Rate Policy," Hitotsubashi Journal of Economics, Hitotsubashi University, vol. 52(1), pages 1-11, June.
    8. Worthington, Andrew & Valadkhani, Abbas, 2005. "Catastrophic Shocks and Capital markets: A Comparative Analysis by Disaster and Sector," Economics Working Papers wp05-20, School of Economics, University of Wollongong, NSW, Australia.
    9. Sonia Benito Muela & Mª Ángeles Navarro, 2018. "Assessing the importance of the choice threshold in quantifying market risk under the POT method (EVT)," Documentos de Trabajo del ICAE 2018-20, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    10. Valadkhani, Abbas, 2005. "Pre- and Post-Dynamic GST Effects on Goods and Services Included in the CPI Basket," Economics Working Papers wp05-08, School of Economics, University of Wollongong, NSW, Australia.
    11. Shih-Jui Yang & Ai-Chi Hsu & Show-Yen Lai & Chien-Chiang Lee, 2015. "Empirical Investigation of Herding Behavior in East Asian Stock Markets Toward the U.S. Market," The International Journal of Business and Finance Research, The Institute for Business and Finance Research, vol. 9(1), pages 19-32.
    12. Sonia Benito & Carmen López-Martín & Mª Ángeles Navarro, 2023. "Assessing the importance of the choice threshold in quantifying market risk under the POT approach (EVT)," Risk Management, Palgrave Macmillan, vol. 25(1), pages 1-31, March.

  23. Wan, Alan T. K. & Chaturvedi, Anoop, 2001. "Double k-Class Estimators in Regression Models with Non-spherical Disturbances," Journal of Multivariate Analysis, Elsevier, vol. 79(2), pages 226-250, November.

    Cited by:

    1. Chaturvedi, Anoop & Shalabh, 2004. "Risk and Pitman closeness properties of feasible generalized double k-class estimators in linear regression models with non-spherical disturbances under balanced loss function," Journal of Multivariate Analysis, Elsevier, vol. 90(2), pages 229-256, August.
    2. Zhang, Xinyu & Chen, Ti & Wan, Alan T.K. & Zou, Guohua, 2009. "Robustness of Stein-type estimators under a non-scalar error covariance structure," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2376-2388, November.
    3. Shalabh, & Garg, G. & Heumann, C., 2012. "Performance of double k-class estimators for coefficients in linear regression models with non-spherical disturbances under asymmetric losses," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 35-47.
    4. Chaturvedi, Anoop & Wan, Alan T. K. & Singh, Shri P., 2002. "Improved Multivariate Prediction in a General Linear Model with an Unknown Error Covariance Matrix," Journal of Multivariate Analysis, Elsevier, vol. 83(1), pages 166-182, October.
    5. Pal, Amresh Bahadur & Dubey, Ashutosh Kumar & Chaturvedi, Anoop, 2016. "Shrinkage estimation in spatial autoregressive model," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 362-373.

  24. Alan Wan & Anoop Chaturvedi, 2000. "Operational Variants of the Minimum Mean Squared Error Estimator in Linear Regression Models with Non-Spherical Disturbances," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 52(2), pages 332-342, June.

    Cited by:

    1. Wan, Alan T. K. & Kurumai, Hiroko, 1999. "An iterative feasible minimum mean squared error estimator of the disturbance variance in linear regression under asymmetric loss," Statistics & Probability Letters, Elsevier, vol. 45(3), pages 253-259, November.
    2. Chaturvedi, Anoop & Wan, Alan T. K. & Singh, Shri P., 2002. "Improved Multivariate Prediction in a General Linear Model with an Unknown Error Covariance Matrix," Journal of Multivariate Analysis, Elsevier, vol. 83(1), pages 166-182, October.
    3. Pal, Amresh Bahadur & Dubey, Ashutosh Kumar & Chaturvedi, Anoop, 2016. "Shrinkage estimation in spatial autoregressive model," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 362-373.

  25. Wan, Alan T. K. & Kurumai, Hiroko, 1999. "An iterative feasible minimum mean squared error estimator of the disturbance variance in linear regression under asymmetric loss," Statistics & Probability Letters, Elsevier, vol. 45(3), pages 253-259, November.

    Cited by:

    1. Fikri Akdeniz, 2004. "New biased estimators under the LINEX loss function," Statistical Papers, Springer, vol. 45(2), pages 175-190, April.
    2. Wan, Alan T. K. & Zou, Guohua & Lee, Andy H., 2000. "Minimax and [Gamma]-minimax estimation for the Poisson distribution under LINEX loss when the parameter space is restricted," Statistics & Probability Letters, Elsevier, vol. 50(1), pages 23-32, October.
    3. Qin, Huaizhen & Ouyang, Weiwei, 2016. "Asymmetric risk of the Stein variance estimator under a misspecified linear regression model," Statistics & Probability Letters, Elsevier, vol. 116(C), pages 94-100.
    4. Ohtani, Kazuhiro, 2001. "MSE dominance of the pre-test iterative variance estimator over the iterative variance estimator in regression," Statistics & Probability Letters, Elsevier, vol. 54(3), pages 331-340, October.

  26. Wan, Alan T. K., 1994. "Risk comparison of the inequality constrained least squares and other related estimators under balanced loss," Economics Letters, Elsevier, vol. 46(3), pages 203-210, November. See citations under working paper version above.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.