IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v61y2020i4d10.1007_s00362-018-1002-4.html
   My bibliography  Save this article

Model averaging estimator in ridge regression and its large sample properties

Author

Listed:
  • Shangwei Zhao

    (Minzu University of China)

  • Jun Liao

    (Capital Normal University)

  • Dalei Yu

    (Yunnan University of Finance and Economics)

Abstract

In linear regression, when the covariates are highly collinear, ridge regression has become the standard treatment. The choice of ridge parameter plays a central role in ridge regression. In this paper, instead of ending up with a single ridge parameter, we consider a model averaging method to combine multiple ridge estimators with $$M_n$$ M n different ridge parameters, where $$M_n$$ M n can go to infinity with sample size n. We show that when the fitting model is correctly specified, the resulting model averaging estimator is $$n^{1/2}$$ n 1 / 2 -consistent. When the fitting model is misspecified, the asymptotic optimality of the model averaging estimator is also established rigorously. The results of simulation studies and our case study concerning the urbanization level of Chinese ethnic areas demonstrate the usefulness of the model averaging method.

Suggested Citation

  • Shangwei Zhao & Jun Liao & Dalei Yu, 2020. "Model averaging estimator in ridge regression and its large sample properties," Statistical Papers, Springer, vol. 61(4), pages 1719-1739, August.
  • Handle: RePEc:spr:stpapr:v:61:y:2020:i:4:d:10.1007_s00362-018-1002-4
    DOI: 10.1007/s00362-018-1002-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-018-1002-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-018-1002-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hansen, Bruce E. & Racine, Jeffrey S., 2012. "Jackknife model averaging," Journal of Econometrics, Elsevier, vol. 167(1), pages 38-46.
    2. Gao, Yan & Zhang, Xinyu & Wang, Shouyang & Zou, Guohua, 2016. "Model averaging based on leave-subject-out cross-validation," Journal of Econometrics, Elsevier, vol. 192(1), pages 139-151.
    3. Lu, Xun & Su, Liangjun, 2015. "Jackknife model averaging for quantile regressions," Journal of Econometrics, Elsevier, vol. 188(1), pages 40-58.
    4. Gerda Claeskens & Christophe Croux & Johan Van Kerckhoven, 2006. "Variable Selection for Logistic Regression Using a Prediction-Focused Information Criterion," Biometrics, The International Biometric Society, vol. 62(4), pages 972-979, December.
    5. Schomaker, Michael & Wan, Alan T.K. & Heumann, Christian, 2010. "Frequentist Model Averaging with missing observations," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3336-3347, December.
    6. Enrique Moral-Benito, 2015. "Model Averaging In Economics: An Overview," Journal of Economic Surveys, Wiley Blackwell, vol. 29(1), pages 46-75, February.
    7. Zhang, Xinyu & Wan, Alan T.K. & Zou, Guohua, 2013. "Model averaging by jackknife criterion in models with dependent data," Journal of Econometrics, Elsevier, vol. 174(2), pages 82-94.
    8. Michael Schomaker, 2012. "Shrinkage averaging estimation," Statistical Papers, Springer, vol. 53(4), pages 1015-1034, November.
    9. Zhang, Xinyu, 2015. "Consistency of model averaging estimators," Economics Letters, Elsevier, vol. 130(C), pages 120-123.
    10. Yuan, Zheng & Yang, Yuhong, 2005. "Combining Linear Regression Models: When and How?," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1202-1214, December.
    11. Xinyu Zhang & Alan Wan & Sherry Zhou, 2012. "Focused Information Criteria, Model Selection, and Model Averaging in a Tobit Model With a Nonzero Threshold," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(1), pages 132-142.
    12. Qingfeng Liu & Ryo Okui, 2013. "Heteroscedasticity‐robust C(p) model averaging," Econometrics Journal, Royal Economic Society, vol. 16(3), pages 463-472, October.
    13. Wan, Alan T.K. & Zhang, Xinyu & Zou, Guohua, 2010. "Least squares model averaging by Mallows criterion," Journal of Econometrics, Elsevier, vol. 156(2), pages 277-283, June.
    14. Xinyu Zhang & Guohua Zou & Hua Liang, 2014. "Model averaging and weight choice in linear mixed-effects models," Biometrika, Biometrika Trust, vol. 101(1), pages 205-218.
    15. Tze‐San Lee, 1987. "Optimum Ridge Parameter Selection," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 36(1), pages 112-118, March.
    16. Jan R. Magnus & Giuseppe De Luca, 2016. "Weighted-Average Least Squares (Wals): A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 30(1), pages 117-148, February.
    17. Bruce E. Hansen, 2007. "Least Squares Model Averaging," Econometrica, Econometric Society, vol. 75(4), pages 1175-1189, July.
    18. Cheryl J. Flynn & Clifford M. Hurvich & Jeffrey S. Simonoff, 2013. "Efficiency for Regularization Parameter Selection in Penalized Likelihood Estimation of Misspecified Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(503), pages 1031-1043, September.
    19. Ghosh, D. & Yuan, Z., 2009. "An improved model averaging scheme for logistic regression," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1670-1681, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alena Skolkova, 2023. "Model Averaging with Ridge Regularization," CERGE-EI Working Papers wp758, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
    2. Hui Wang & Jinzhuo Wu & Wenshu Lin & Zhaoping Luan, 2023. "Carbon Footprint Accounting and Influencing Factors Analysis for Forestry Enterprises in the Key State-Owned Forest Region of the Greater Khingan Range, Northeast China," Sustainability, MDPI, vol. 15(11), pages 1-21, May.
    3. Zulj, Valentin & Jin, Shaobo, 2024. "Can model averaging improve propensity score based estimation of average treatment effects?," Working Paper Series 2024:1, IFAU - Institute for Evaluation of Labour Market and Education Policy.
    4. Xiaochao Xia, 2021. "Model averaging prediction for nonparametric varying-coefficient models with B-spline smoothing," Statistical Papers, Springer, vol. 62(6), pages 2885-2905, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xinyu & Liu, Chu-An, 2023. "Model averaging prediction by K-fold cross-validation," Journal of Econometrics, Elsevier, vol. 235(1), pages 280-301.
    2. Yuting Wei & Qihua Wang & Wei Liu, 2021. "Model averaging for linear models with responses missing at random," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(3), pages 535-553, June.
    3. Sun, Yuying & Hong, Yongmiao & Lee, Tae-Hwy & Wang, Shouyang & Zhang, Xinyu, 2021. "Time-varying model averaging," Journal of Econometrics, Elsevier, vol. 222(2), pages 974-992.
    4. Shou-Yung Yin & Chu-An Liu & Chang-Ching Lin, 2021. "Focused Information Criterion and Model Averaging for Large Panels With a Multifactor Error Structure," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 54-68, January.
    5. Haili Zhang & Guohua Zou, 2020. "Cross-Validation Model Averaging for Generalized Functional Linear Model," Econometrics, MDPI, vol. 8(1), pages 1-35, February.
    6. Chu-An Liu & Biing-Shen Kuo & Wen-Jen Tsay, 2017. "Autoregressive Spectral Averaging Estimator," IEAS Working Paper : academic research 17-A013, Institute of Economics, Academia Sinica, Taipei, Taiwan.
    7. Aman Ullah & Alan T. K. Wan & Huansha Wang & Xinyu Zhang & Guohua Zou, 2017. "A semiparametric generalized ridge estimator and link with model averaging," Econometric Reviews, Taylor & Francis Journals, vol. 36(1-3), pages 370-384, March.
    8. Xinyu Zhang & Dalei Yu & Guohua Zou & Hua Liang, 2016. "Optimal Model Averaging Estimation for Generalized Linear Models and Generalized Linear Mixed-Effects Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1775-1790, October.
    9. Liao, Jun & Zou, Guohua, 2020. "Corrected Mallows criterion for model averaging," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    10. Zhang, Xiaomeng & Zhang, Xinyu, 2023. "Optimal model averaging based on forward-validation," Journal of Econometrics, Elsevier, vol. 237(2).
    11. Zhao, Shangwei & Zhou, Jianhong & Li, Hongjun, 2016. "Model averaging with high-dimensional dependent data," Economics Letters, Elsevier, vol. 148(C), pages 68-71.
    12. Lu, Xun & Su, Liangjun, 2015. "Jackknife model averaging for quantile regressions," Journal of Econometrics, Elsevier, vol. 188(1), pages 40-58.
    13. Wei, Yuting & Wang, Qihua, 2021. "Cross-validation-based model averaging in linear models with response missing at random," Statistics & Probability Letters, Elsevier, vol. 171(C).
    14. Jingwen Tu & Hu Yang & Chaohui Guo & Jing Lv, 2021. "Model averaging marginal regression for high dimensional conditional quantile prediction," Statistical Papers, Springer, vol. 62(6), pages 2661-2689, December.
    15. Qingfeng Liu & Ryo Okui & Arihiro Yoshimura, 2016. "Generalized Least Squares Model Averaging," Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1692-1752, December.
    16. Zhang, Xinyu & Ullah, Aman & Zhao, Shangwei, 2016. "On the dominance of Mallows model averaging estimator over ordinary least squares estimator," Economics Letters, Elsevier, vol. 142(C), pages 69-73.
    17. Xie, Tian, 2017. "Heteroscedasticity-robust model screening: A useful toolkit for model averaging in big data analytics," Economics Letters, Elsevier, vol. 151(C), pages 119-122.
    18. Xiaochao Xia, 2021. "Model averaging prediction for nonparametric varying-coefficient models with B-spline smoothing," Statistical Papers, Springer, vol. 62(6), pages 2885-2905, December.
    19. Michael Schomaker & Christian Heumann, 2020. "When and when not to use optimal model averaging," Statistical Papers, Springer, vol. 61(5), pages 2221-2240, October.
    20. Rongjie Jiang & Liming Wang & Yang Bai, 2021. "Optimal model averaging estimator for semi-functional partially linear models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(2), pages 167-194, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:61:y:2020:i:4:d:10.1007_s00362-018-1002-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.