IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v134y2024ics0140988324003207.html
   My bibliography  Save this article

Climate change and crude oil prices: An interval forecast model with interval-valued textual data

Author

Listed:
  • Cheng, Zishu
  • Li, Mingchen
  • Sun, Yuying
  • Hong, Yongmiao
  • Wang, Shouyang

Abstract

Climate change compels the development and enforcement of policies and regulations designed to diminish carbon emissions, imposing substantial implications on the energy sector. Given the contribution of crude oil prices to carbon emissions, developing precise forecasting methods is imperative. However, existing studies often overlook the inherent uncertainty in price movements by focusing solely on point forecasting. To address this limitation, this paper constructs a threshold autoregressive interval-valued model with interval sentiment indexes for climate change (TARIX) to analyze and forecast interval-valued crude oil prices. We have found that the interval climate sentiment index, derived from social media, can significantly enhance the accuracy in forecasting interval crude oil prices. Moreover, we propose an interval-based trading strategy that can effectively reduce volatility and enhance returns. Our empirical results demonstrate that our interval-valued forecast model outperforms traditional forecasting methods in terms of forecasting accuracy and profit generation.

Suggested Citation

  • Cheng, Zishu & Li, Mingchen & Sun, Yuying & Hong, Yongmiao & Wang, Shouyang, 2024. "Climate change and crude oil prices: An interval forecast model with interval-valued textual data," Energy Economics, Elsevier, vol. 134(C).
  • Handle: RePEc:eee:eneeco:v:134:y:2024:i:c:s0140988324003207
    DOI: 10.1016/j.eneco.2024.107612
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988324003207
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2024.107612?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bassam Fattouh, Lutz Kilian, and Lavan Mahadeva, 2013. "The Role of Speculation in Oil Markets: What Have We Learned So Far?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    2. Paulo Rodrigues & Nazarii Salish, 2015. "Modeling and forecasting interval time series with threshold models," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(1), pages 41-57, March.
    3. Li, Jinchao & Zhu, Shaowen & Wu, Qianqian, 2019. "Monthly crude oil spot price forecasting using variational mode decomposition," Energy Economics, Elsevier, vol. 83(C), pages 240-253.
    4. Christiane Baumeister & Lutz Kilian, 2016. "Lower Oil Prices and the U.S. Economy: Is This Time Different?," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 47(2 (Fall)), pages 287-357.
    5. Christiane Baumeister & Lutz Kilian, 2015. "Forecasting the Real Price of Oil in a Changing World: A Forecast Combination Approach," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(3), pages 338-351, July.
    6. Baumeister, Christiane & Guérin, Pierre & Kilian, Lutz, 2015. "Do high-frequency financial data help forecast oil prices? The MIDAS touch at work," International Journal of Forecasting, Elsevier, vol. 31(2), pages 238-252.
    7. Yuying Sun & Kenan Qiao & Shouyang Wang, 2021. "Uncertainty shocks of Trump election in an interval model of stock market," Quantitative Finance, Taylor & Francis Journals, vol. 21(5), pages 865-879, May.
    8. Baumeister, Christiane & Kilian, Lutz & Zhou, Xiaoqing, 2018. "Are Product Spreads Useful For Forecasting Oil Prices? An Empirical Evaluation Of The Verleger Hypothesis," Macroeconomic Dynamics, Cambridge University Press, vol. 22(3), pages 562-580, April.
    9. Robert K. Kaufmann, Stephane Dees, Pavlos Karadeloglou and Marcelo Sanchez, 2004. "Does OPEC Matter? An Econometric Analysis of Oil Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 67-90.
    10. James D. Hamilton, 2009. "Understanding Crude Oil Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 179-206.
    11. Alao, Rasheed O. & Payaslioglu, Cem, 2021. "Oil price uncertainty and industrial production in oil-exporting countries," Resources Policy, Elsevier, vol. 70(C).
    12. John Elder & Apostolos Serletis, 2010. "Oil Price Uncertainty," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 42(6), pages 1137-1159, September.
    13. Guo, Kun & Liu, Fengqi & Sun, Xiaolei & Zhang, Dayong & Ji, Qiang, 2023. "Predicting natural gas futures’ volatility using climate risks," Finance Research Letters, Elsevier, vol. 55(PA).
    14. Christiane Baumeister & Lutz Killian, 2016. "Lower Oil Prices and the U.S. Economy: Is This Time Different?," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 47(2 (Fall)), pages 287-357.
    15. Chen, Hao & Wang, Yu & Zuo, Mingsheng & Zhang, Chao & Jia, Ninghong & Liu, Xiliang & Yang, Shenglai, 2022. "A new prediction model of CO2 diffusion coefficient in crude oil under reservoir conditions based on BP neural network," Energy, Elsevier, vol. 239(PC).
    16. James W. Taylor & Derek W. Bunn, 1999. "A Quantile Regression Approach to Generating Prediction Intervals," Management Science, INFORMS, vol. 45(2), pages 225-237, February.
    17. Lutz Kilian, 2009. "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market," American Economic Review, American Economic Association, vol. 99(3), pages 1053-1069, June.
    18. Lutz Kilian & Robert J. Vigfusson, 2011. "Are the responses of the U.S. economy asymmetric in energy price increases and decreases?," Quantitative Economics, Econometric Society, vol. 2(3), pages 419-453, November.
    19. He, Angela W.W. & Kwok, Jerry T.K. & Wan, Alan T.K., 2010. "An empirical model of daily highs and lows of West Texas Intermediate crude oil prices," Energy Economics, Elsevier, vol. 32(6), pages 1499-1506, November.
    20. Guo, Kun & Li, Yichong & Zhang, Yunhan & Ji, Qiang & Zhao, Wanli, 2023. "How are climate risk shocks connected to agricultural markets?," Journal of Commodity Markets, Elsevier, vol. 32(C).
    21. Sun, Yuying & Han, Ai & Hong, Yongmiao & Wang, Shouyang, 2018. "Threshold autoregressive models for interval-valued time series data," Journal of Econometrics, Elsevier, vol. 206(2), pages 414-446.
    22. Lutz Kilian & Robert J. Vigfusson, 2013. "Do Oil Prices Help Forecast U.S. Real GDP? The Role of Nonlinearities and Asymmetries," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 78-93, January.
    23. Saeed Moshiri & Faezeh Foroutan, 2006. "Forecasting Nonlinear Crude Oil Futures Prices," The Energy Journal, , vol. 27(4), pages 81-96, October.
    24. James L. Smith, 2009. "World Oil: Market or Mayhem?," Journal of Economic Perspectives, American Economic Association, vol. 23(3), pages 145-164, Summer.
    25. Chai, Jian & Xing, Li-Min & Zhou, Xiao-Yang & Zhang, Zhe George & Li, Jie-Xun, 2018. "Forecasting the WTI crude oil price by a hybrid-refined method," Energy Economics, Elsevier, vol. 71(C), pages 114-127.
    26. Lutz Kilian & Daniel P. Murphy, 2014. "The Role Of Inventories And Speculative Trading In The Global Market For Crude Oil," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(3), pages 454-478, April.
    27. Sun, Yuying & Zhang, Xun & Hong, Yongmiao & Wang, Shouyang, 2019. "Asymmetric pass-through of oil prices to gasoline prices with interval time series modelling," Energy Economics, Elsevier, vol. 78(C), pages 165-173.
    28. Don Bredin & John Elder & Stilianos Fountas, 2010. "The Effects of Uncertainty about Oil Prices in G-7," Working Papers 200840, Geary Institute, University College Dublin.
    29. Sun, Yuying & Bao, Qin & Zheng, Jiali & Wang, Shouyang, 2020. "Assessing the price dynamics of onshore and offshore RMB markets: An ITS model approach," China Economic Review, Elsevier, vol. 62(C).
    30. Phan, Dinh Hoang Bach & Tran, Vuong Thao & Nguyen, Dat Thanh, 2019. "Crude oil price uncertainty and corporate investment: New global evidence," Energy Economics, Elsevier, vol. 77(C), pages 54-65.
    31. Hochman, Gal & Zilberman, David, 2015. "The political economy of OPEC," Energy Economics, Elsevier, vol. 48(C), pages 203-216.
    32. An, Lian & Jin, Xiaoze & Ren, Xiaomei, 2014. "Are the macroeconomic effects of oil price shock symmetric?: A Factor-Augmented Vector Autoregressive approach," Energy Economics, Elsevier, vol. 45(C), pages 217-228.
    33. Lardic, Sandrine & Mignon, Valérie, 2008. "Oil prices and economic activity: An asymmetric cointegration approach," Energy Economics, Elsevier, vol. 30(3), pages 847-855, May.
    34. Lo, Gaye-Del & Marcelin, Isaac & Bassène, Théophile & Sène, Babacar, 2022. "The Russo-Ukrainian war and financial markets: the role of dependence on Russian commodities," Finance Research Letters, Elsevier, vol. 50(C).
    35. Christophe McGlade & Paul Ekins, 2015. "The geographical distribution of fossil fuels unused when limiting global warming to 2 °C," Nature, Nature, vol. 517(7533), pages 187-190, January.
    36. Baker, Erin & Bosetti, Valentina & Salo, Ahti, 2020. "Robust portfolio decision analysis: An application to the energy research and development portfolio problem," European Journal of Operational Research, Elsevier, vol. 284(3), pages 1107-1120.
    37. Ghoddusi, Hamed & Creamer, Germán G. & Rafizadeh, Nima, 2019. "Machine learning in energy economics and finance: A review," Energy Economics, Elsevier, vol. 81(C), pages 709-727.
    38. Yu, Lean & Wang, Shouyang & Lai, Kin Keung, 2008. "Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm," Energy Economics, Elsevier, vol. 30(5), pages 2623-2635, September.
    39. Yu, Lean & Zhao, Yaqing & Tang, Ling & Yang, Zebin, 2019. "Online big data-driven oil consumption forecasting with Google trends," International Journal of Forecasting, Elsevier, vol. 35(1), pages 213-223.
    40. James D. Hamilton, 2009. "Understanding Crude Oil Prices," The Energy Journal, , vol. 30(2), pages 179-206, April.
    41. Gloria González-Rivera & Wei Lin, 2013. "Constrained Regression for Interval-Valued Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(4), pages 473-490, October.
    42. Zhang, Jin-Liang & Zhang, Yue-Jun & Zhang, Lu, 2015. "A novel hybrid method for crude oil price forecasting," Energy Economics, Elsevier, vol. 49(C), pages 649-659.
    43. Zhang, Dayong & Wu, Yalin & Ji, Qiang & Guo, Kun & Lucey, Brian, 2024. "Climate impacts on the loan quality of Chinese regional commercial banks," Journal of International Money and Finance, Elsevier, vol. 140(C).
    44. Chen, Yajie & Zhang, Dayong & Guo, Kun & Ji, Qiang, 2024. "Emission trading schemes and cross-border mergers and acquisitions," Journal of Environmental Economics and Management, Elsevier, vol. 124(C).
    45. Quanying Lu & Yuying Sun & Yongmiao Hong & Shouyang Wang, 2022. "Forecasting interval-valued crude oil prices using asymmetric interval models," Quantitative Finance, Taylor & Francis Journals, vol. 22(11), pages 2047-2061, November.
    46. Çepni, Oğuzhan & Gupta, Rangan & Pienaar, Daniel & Pierdzioch, Christian, 2022. "Forecasting the realized variance of oil-price returns using machine learning: Is there a role for U.S. state-level uncertainty?," Energy Economics, Elsevier, vol. 114(C).
    47. Goolsbee, Austan & Syverson, Chad, 2021. "Fear, lockdown, and diversion: Comparing drivers of pandemic economic decline 2020," Journal of Public Economics, Elsevier, vol. 193(C).
    48. Tim Loughran & Bill Mcdonald, 2016. "Textual Analysis in Accounting and Finance: A Survey," Journal of Accounting Research, Wiley Blackwell, vol. 54(4), pages 1187-1230, September.
    49. Cong, Rong-Gang & Wei, Yi-Ming & Jiao, Jian-Lin & Fan, Ying, 2008. "Relationships between oil price shocks and stock market: An empirical analysis from China," Energy Policy, Elsevier, vol. 36(9), pages 3544-3553, September.
    50. Jammazi, Rania & Aloui, Chaker, 2012. "Crude oil price forecasting: Experimental evidence from wavelet decomposition and neural network modeling," Energy Economics, Elsevier, vol. 34(3), pages 828-841.
    51. Wei, Yanfeng & Guo, Xiaoying, 2016. "An empirical analysis of the relationship between oil prices and the Chinese macro-economy," Energy Economics, Elsevier, vol. 56(C), pages 88-100.
    52. Dmitry Ivanov & Alexandre Dolgui, 2020. "Viability of intertwined supply networks: extending the supply chain resilience angles towards survivability. A position paper motivated by COVID-19 outbreak," International Journal of Production Research, Taylor & Francis Journals, vol. 58(10), pages 2904-2915, May.
    53. He, Yanan & Wang, Shouyang & Lai, Kin Keung, 2010. "Global economic activity and crude oil prices: A cointegration analysis," Energy Economics, Elsevier, vol. 32(4), pages 868-876, July.
    54. Ai Han & Yongmiao Hong & Shouyang Wang & Xin Yun, 2016. "A Vector Autoregressive Moving Average Model for Interval-Valued Time Series Data," Advances in Econometrics, in: Essays in Honor of Aman Ullah, volume 36, pages 417-460, Emerald Group Publishing Limited.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    2. Cheng, Xian & Wu, Peng & Liao, Stephen Shaoyi & Wang, Xuelian, 2023. "An integrated model for crude oil forecasting: Causality assessment and technical efficiency," Energy Economics, Elsevier, vol. 117(C).
    3. Wang, Yudong & Liu, Li & Diao, Xundi & Wu, Chongfeng, 2015. "Forecasting the real prices of crude oil under economic and statistical constraints," Energy Economics, Elsevier, vol. 51(C), pages 599-608.
    4. Wang, Yudong & Hao, Xianfeng, 2022. "Forecasting the real prices of crude oil: A robust weighted least squares approach," Energy Economics, Elsevier, vol. 116(C).
    5. Naser, Hanan, 2016. "Estimating and forecasting the real prices of crude oil: A data rich model using a dynamic model averaging (DMA) approach," Energy Economics, Elsevier, vol. 56(C), pages 75-87.
    6. Stavros Degiannakis & George Filis & Vipin Arora, 2018. "Oil Prices and Stock Markets: A Review of the Theory and Empirical Evidence," The Energy Journal, , vol. 39(5), pages 85-130, September.
    7. Wang, Yudong & Liu, Li & Wu, Chongfeng, 2017. "Forecasting the real prices of crude oil using forecast combinations over time-varying parameter models," Energy Economics, Elsevier, vol. 66(C), pages 337-348.
    8. Herrera, Ana María & Karaki, Mohamad B. & Rangaraju, Sandeep Kumar, 2019. "Oil price shocks and U.S. economic activity," Energy Policy, Elsevier, vol. 129(C), pages 89-99.
    9. Han, Liyan & Lv, Qiuna & Yin, Libo, 2017. "Can investor attention predict oil prices?," Energy Economics, Elsevier, vol. 66(C), pages 547-558.
    10. Akdoğan, Kurmaş, 2020. "Fundamentals versus speculation in oil market: The role of asymmetries in price adjustment?," Resources Policy, Elsevier, vol. 67(C).
    11. Degiannakis, Stavros & Filis, George, 2023. "Oil price assumptions for macroeconomic policy," Energy Economics, Elsevier, vol. 117(C).
    12. Sun, Yuying & Zhang, Xinyu & Wan, Alan T.K. & Wang, Shouyang, 2022. "Model averaging for interval-valued data," European Journal of Operational Research, Elsevier, vol. 301(2), pages 772-784.
    13. Zheng, Li & Sun, Yuying & Wang, Shouyang, 2024. "A novel interval-based hybrid framework for crude oil price forecasting and trading," Energy Economics, Elsevier, vol. 130(C).
    14. Yan, Zichun & Tian, Fangzhu & Sun, Yuying & Wang, Shouyang, 2024. "A time-frequency-based interval decomposition ensemble method for forecasting gasoil prices under the trend of low-carbon development," Energy Economics, Elsevier, vol. 134(C).
    15. Awartani, Basel & Maghyereh, Aktham & Ayton, Julie, 2020. "Oil price changes and industrial output in the MENA region: Nonlinearities and asymmetries," Energy, Elsevier, vol. 196(C).
    16. Sun, Shaolong & Sun, Yuying & Wang, Shouyang & Wei, Yunjie, 2018. "Interval decomposition ensemble approach for crude oil price forecasting," Energy Economics, Elsevier, vol. 76(C), pages 274-287.
    17. Degiannakis, Stavros & Filis, George, 2017. "Forecasting oil prices," MPRA Paper 77531, University Library of Munich, Germany.
    18. Hao, Xianfeng & Zhao, Yuyang & Wang, Yudong, 2020. "Forecasting the real prices of crude oil using robust regression models with regularization constraints," Energy Economics, Elsevier, vol. 86(C).
    19. D'Ecclesia, Rita L. & Magrini, Emiliano & Montalbano, Pierluigi & Triulzi, Umberto, 2014. "Understanding recent oil price dynamics: A novel empirical approach," Energy Economics, Elsevier, vol. 46(S1), pages 11-17.
    20. Liu, Li & Wang, Yudong & Yang, Li, 2018. "Predictability of crude oil prices: An investor perspective," Energy Economics, Elsevier, vol. 75(C), pages 193-205.

    More about this item

    Keywords

    Crude oil future price; Interval time series; Textual analysis; Trading strategy;
    All these keywords.

    JEL classification:

    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:134:y:2024:i:c:s0140988324003207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.