IDEAS home Printed from https://ideas.repec.org/a/vrs/demode/v10y2022i1p207-214n9.html
   My bibliography  Save this article

Applying spline-based phase analysis to macroeconomic dynamics

Author

Listed:
  • Lyudmila Gadasina

    (Center for Econimetrics and Business Analytics (CEBA), St Petersburg State University, 7-9, Universitetskaya nab., St Petersburg, 199034, Russian Federation)

  • Lyudmila Vyunenko

    (St Petersburg State University, 7-9, Universitetskaya nab., St Petersburg, 199034, Russian Federation)

Abstract

The article uses spline-based phase analysis to study the dynamics of a time series of low-frequency data on the values of a certain economic indicator. The approach includes two stages. At the first stage, the original series is approximated by a smooth twice-differentiable function. Natural cubic splines are used as an approximating function y y . Such splines have the smallest curvature over the observation interval compared to other possible functions that satisfy the choice criterion. At the second stage, a phase trajectory is constructed in ( t , y , y ′ ) \left(t,y,y^{\prime} ) -space, corresponding to the original time series, and a phase shadow as a projection of the phase trajectory onto the ( y , y ′ ) (y,y^{\prime} ) -plane. The approach is applied to the values of GDP indicators for the G7 countries. The interrelation between phase shadow loops and cycles of economic indicators evolution is shown. The study also discusses the features, limitations and prospects for the use of spline-based phase analysis.

Suggested Citation

  • Lyudmila Gadasina & Lyudmila Vyunenko, 2022. "Applying spline-based phase analysis to macroeconomic dynamics," Dependence Modeling, De Gruyter, vol. 10(1), pages 207-214, January.
  • Handle: RePEc:vrs:demode:v:10:y:2022:i:1:p:207-214:n:9
    DOI: 10.1515/demo-2022-0113
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/demo-2022-0113
    Download Restriction: no

    File URL: https://libkey.io/10.1515/demo-2022-0113?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Leng, Na & Li, Jiang-Cheng, 2020. "Forecasting the crude oil prices based on Econophysics and Bayesian approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    2. Helen X.H. Bao & Alan T.K. Wan, 2004. "On the Use of Spline Smoothing in Estimating Hedonic Housing Price Models: Empirical Evidence Using Hong Kong Data," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 32(3), pages 487-507, September.
    3. Tarasov, Vasily E., 2020. "Fractional econophysics: Market price dynamics with memory effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel Melser, 2023. "Selection Bias in Housing Price Indexes: The Characteristics Repeat Sales Approach," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 623-637, June.
    2. Rolf Färe & Shawna Grosskopf & Joaquín Maudos & Emili Tortosa-ausina, 2015. "Revisiting the quiet life hypothesis in banking using nonparametric techniques," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 16(1), pages 159-187, February.
    3. Gruszka, Jarosław & Szwabiński, Janusz, 2021. "Advanced strategies of portfolio management in the Heston market model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    4. Bianca Reichert & Adriano Mendon a Souza, 2022. "Can the Heston Model Forecast Energy Generation? A Systematic Literature Review," International Journal of Energy Economics and Policy, Econjournals, vol. 12(1), pages 289-295.
    5. Inga Timofejeva & Zenonas Navickas & Tadas Telksnys & Romas Marcinkevicius & Minvydas Ragulskis, 2021. "An Operator-Based Scheme for the Numerical Integration of FDEs," Mathematics, MDPI, vol. 9(12), pages 1-17, June.
    6. Mustofa Usman & M. Komarudin & Munti Sarida & Wamiliana Wamiliana & Edwin Russel & Mahatma Kufepaksi & Iskandar Ali Alam & Faiz A.M. Elfaki, 2022. "Analysis of Some Variable Energy Companies by Using VAR(p)-GARCH(r,s) Model : Study From Energy Companies of Qatar over the Years 2015 2022," International Journal of Energy Economics and Policy, Econjournals, vol. 12(5), pages 178-191, September.
    7. Li, Jiang-Cheng & Tao, Chen & Li, Hai-Feng, 2022. "Dynamic forecasting performance and liquidity evaluation of financial market by Econophysics and Bayesian methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    8. Iqbal Syed & Daniel Melser, 2008. "Prices over the Product Life Cycle: An Empirical Analysis," Discussion Papers 2008-25, School of Economics, The University of New South Wales.
    9. Bing Zhu & Roland Füss & Nico Rottke, 2011. "The Predictive Power of Anisotropic Spatial Correlation Modeling in Housing Prices," The Journal of Real Estate Finance and Economics, Springer, vol. 42(4), pages 542-565, May.
    10. Simon K.C. Cheung, 2017. "A Localized Model for Residential Property Valuation: Nearest Neighbor with Attribute Differences," International Real Estate Review, Global Social Science Institute, vol. 20(2), pages 221-250.
    11. Kagie, M. & van Wezel, M.C., 2006. "Hedonic price models and indices based on boosting applied to the Dutch housing market," Econometric Institute Research Papers EI 2006-17, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    12. Magnus, Jan R. & Wan, Alan T.K. & Zhang, Xinyu, 2011. "Weighted average least squares estimation with nonspherical disturbances and an application to the Hong Kong housing market," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1331-1341, March.
    13. Leung, Tin Cheuk & Tsang, Kwok Ping, 2013. "Anchoring and loss aversion in the housing market: Implications on price dynamics," China Economic Review, Elsevier, vol. 24(C), pages 42-54.
    14. David Geltner & Anil Kumar & Alex M. Van de Minne, 2020. "Riskiness of Real Estate Development: A Perspective from Urban Economics and Option Value Theory," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 48(2), pages 406-445, June.
    15. Sherzod N. Tashpulatov, 2022. "Modeling Electricity Price Dynamics Using Flexible Distributions," Mathematics, MDPI, vol. 10(10), pages 1-15, May.
    16. Łaszkiewicz, Edyta & Heyman, Axel & Chen, Xianwen & Cimburova, Zofie & Nowell, Megan & Barton, David N, 2022. "Valuing access to urban greenspace using non-linear distance decay in hedonic property pricing," Ecosystem Services, Elsevier, vol. 53(C).
    17. Borin, Daniel, 2024. "Caputo fractional standard map: Scaling invariance analyses," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    18. Maryam Alkandari & Yuri Luchko, 2024. "Operational Calculus for the 1st-Level General Fractional Derivatives and Its Applications," Mathematics, MDPI, vol. 12(17), pages 1-23, August.
    19. Sakiru, Solarin Adebola & Gil-Alana, Luis A. & Gonzalez-Blanch, Maria Jesus, 2022. "Persistence of economic complexity in OECD countries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    20. Martijn Kagie & Michiel Van Wezel, 2007. "Hedonic price models and indices based on boosting applied to the Dutch housing market," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 15(3‐4), pages 85-106, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:demode:v:10:y:2022:i:1:p:207-214:n:9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.